The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biochemical characterization of human collagenase-3.

The cDNA of a novel matrix metalloproteinase, collagenase-3 (MMP-13) has been isolated from a breast tumor library (Freije, J. M. P., Dicz-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and López-Otin, C. (1994) J. Biol. Chem. 269, 16766-16773), and a potential role in tumor progression has been proposed for this enzyme. In order to establish the possible role of collagenase-3 in connective tissue turnover, we have expressed and purified recombinant human procollagenase-3 and characterized the enzyme biochemically. The purified procollagenase-3 was shown to be glycosylated and displayed a M(r) of 60,000, the N-terminal sequence being LPLPSGGD, which is consistent with the cDNA-predicted sequence. The proenzyme was activated by p-aminophenylmercuric acetate or stromelysin, yielding an intermediate form of M(r) 50,000, which displayed the N-terminal sequence L58EVTGK. Further processing resulted in cleavage of the Glu84-Tyr85 peptide bond to the final active enzyme (M(r) 48,000). Trypsin activation of procollagenase-3 also generated a Tyr85 N terminus, but it was evident that the C-terminal domain was rapidly lost, and hence the collagenolytic activity diminished. Analysis of the substrate specificity of collagenase-3 revealed that soluble type II collagen was preferentially hydrolyzed, while the enzyme was 5 or 6 times less efficient at cleaving type I or III collagen. Fibrillar type I collagen was cleaved with comparable efficiency to the fibroblast and neutrophil collagenases (MMP-1 and MMP-8), respectively. Unlike these collagenases, gelatin and the peptide substrates Mea-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 and Mca-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH2 were efficiently hydrolyzed as well, as would be predicted from the similarities between the active site sequence of collagenase-3 (MMP-13) and the gelatinases A and B. Active collagenase-3 was inhibited in a 1:1 stoichiometric fashion by the tissue inhibitors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3. These results suggest that in vivo collagenase-3 could play a significant role in the turnover of connective tissue matrix constituents.[1]

References

  1. Biochemical characterization of human collagenase-3. Knäuper, V., López-Otin, C., Smith, B., Knight, G., Murphy, G. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities