The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Influence of the redox state of ubiquinones and plastoquinones on the order of lipid bilayers studied by fluorescence anisotropy of diphenylhexatriene and trimethylammonium diphenylhexatriene.

The measurements of diphenylhexatriene (DPH) and trimethylammonium diphenylhexatriene (TMA-DPH) fluorescence anisotropy in egg yolk lecithin (EYL) and of DPH anisotropy in dipalmitoylphosphatidylcholine (DPPC) liposomes containing different concentrations of oxidized and reduced ubiquinone (UQ) and plastoquinone (PQ) homologues have been performed. All the oxidized UQ homologues strongly induced ordering of EYL membrane structure, whereas in DPPC liposomes, above the phase transition temperature, the most pronounced effect showed UQ-4. PQ-2 and PQ-9 were less effective than the corresponding ubiquinones in this respect. The reduced forms of UQ and PQ homologues increased the order of membrane lipids to a smaller extent than the corresponding quinones both in the interior of the membrane and closer to its surface. Nevertheless, the investigated prenylquinols showed stronger increase in the membrane order than alpha-tocopherol or alpha-tocopherol acetate, which could be connected with binding of prenylquinol head groups to phospholipid molecules by hydrogen bonds. The strong ordering influence of ubiquinones on the membrane structure was attributed to methoxyl groups of the UQ quinone rings.[1]


WikiGenes - Universities