The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Trimethylamin     N,N-dimethylmethanamine

Synonyms: trimethylamine, trimethylamino, NMe3, CHEMBL439723, HSDB 808, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dimethylmethaneamine

 

High impact information on Dimethylmethaneamine

  • Cell lines expressing temperature-sensitive mutants of the tumor suppressor protein p53, the viral oncogene protein pp60src, or a ubiquitin activating enzyme E1, were incubated at the nonpermissive temperature (39.5 degrees C) in the presence of glycerol, trimethylamine N-oxide or deuterated water [6].
  • Sera from H. pylori-infected persons neutralized the cytotoxins produced by multiple H. pylori strains, but failed to neutralize trimethylamine-induced cell vacuolation [7].
  • The torI gene has been identified by using a genetic multicopy approach as a negative regulator of the torCAD operon that encodes the trimethylamine N-oxide reductase respiratory system in Escherichia coli [8].
  • This operon is positively regulated, in the presence of trimethylamine N-oxide, by a four-step phosphorelay involving the TorS sensor and the TorR response regulator [8].
  • The Stokes radius characteristics of reduced and carboxamidated ribonuclease A (RCAM RNase) were determined for transfer of this "random coil" protein from water to 1 M concentrations of the naturally occurring protecting osmolytes trimethylamine N-oxide, sarcosine, sucrose, and proline and the nonprotecting osmolyte urea [9].
 

Chemical compound and disease context of Dimethylmethaneamine

 

Biological context of Dimethylmethaneamine

 

Anatomical context of Dimethylmethaneamine

 

Associations of Dimethylmethaneamine with other chemical compounds

  • The rate of pH(i) recovery from trimethylamine hydrochloride-induced intracellular alkaline load was enhanced so that net HCO(3) efflux increased about three times in the presence of ET-1 (2.74+/-0.25 versus 9.66+/-1.29 mmol. L(-1). min(-1) at pH(i) 7.55, P<0.05) [25].
  • The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process [26].
  • Here we show that both the superantigen and protein presentation defect in MHC II-transfected, HLA-DM-deficient T2 cells can be partially overcome by treating the APC with the chemical chaperones glycerol, DMSO, or trimethylamine oxide [27].
  • Recent evidence from isotope studies supports the view that catalysis by trimethylamine dehydrogenase (TMADH) proceeds from a Michaelis complex involving trimethylamine base and not, as thought previously, trimethylammonium cation [28].
  • Na+ and K+ displayed monophasic binding to the type II site, (CH3)3NH+ and (CH3)4N+ displayed monophasic binding to the type I site, and Li+, Rb+, and Cs+ displayed either monophasic or biphasic binding to one or both sites depending on pH [29].
 

Gene context of Dimethylmethaneamine

  • The Lys158 to Glu158 human FMO3 polymorphism does not decrease trimethylamine N-oxygenation for the cDNA-expressed enzyme and thus does not appear to be causative of trimethyaminuria [30].
  • The inherited metabolic disorder trimethylaminuria (fish-odor syndrome) is associated with defective hepatic N-oxidation of dietary-derived trimethylamine catalyzed by flavin-containing monooxygenase (FMO) [31].
  • These four isoforms, as well as purified rabbit FMO2, and eleven heterologously expressed human P450 isoforms were examined for their capacity to metabolize trimethylamine (TMA) to its N-oxide (TMAO), using a new, specific HPLC method with radiochemical detection [32].
  • The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes [33].
  • The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli [34].
 

Analytical, diagnostic and therapeutic context of Dimethylmethaneamine

References

  1. Trimethylamine metabolism in liver disease. Marks, R., Dudley, F., Wan, A. Lancet (1978) [Pubmed]
  2. Campylobacter laridis causing bacteremia in an immunosuppressed patient. Nachamkin, I., Stowell, C., Skalina, D., Jones, A.M., Hoop, R.M., Smibert, R.M. Ann. Intern. Med. (1984) [Pubmed]
  3. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Iuchi, S., Lin, E.C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  4. Extensive conformational sampling in a ternary electron transfer complex. Leys, D., Basran, J., Talfournier, F., Sutcliffe, M.J., Scrutton, N.S. Nat. Struct. Biol. (2003) [Pubmed]
  5. 1H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man. Avison, M.J., Rothman, D.L., Nixon, T.W., Long, W.S., Siegel, N.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  6. Correcting temperature-sensitive protein folding defects. Brown, C.R., Hong-Brown, L.Q., Welch, W.J. J. Clin. Invest. (1997) [Pubmed]
  7. Serum neutralizing antibody response to the vacuolating cytotoxin of Helicobacter pylori. Cover, T.L., Cao, P., Murthy, U.K., Sipple, M.S., Blaser, M.J. J. Clin. Invest. (1992) [Pubmed]
  8. TorI, a response regulator inhibitor of phage origin in Escherichia coli. Ansaldi, M., Théraulaz, L., Méjean, V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. Osmolyte-driven contraction of a random coil protein. Qu, Y., Bolen, C.L., Bolen, D.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  10. Increase in human exposure to methylamine precursors of N-nitrosamines after eating fish. Zeisel, S.H., DaCosta, K.A. Cancer Res. (1986) [Pubmed]
  11. Inductions of superoxide dismutases in Escherichia coli under anaerobic conditions. Accumulation of an inactive form of the manganese enzyme. Privalle, C.T., Fridovich, I. J. Biol. Chem. (1988) [Pubmed]
  12. Carnitine metabolism and its regulation in microorganisms and mammals. Rebouche, C.J., Seim, H. Annu. Rev. Nutr. (1998) [Pubmed]
  13. Isolation, cloning, sequence analysis and localization of the operon encoding dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus. Knäblein, J., Mann, K., Ehlert, S., Fonstein, M., Huber, R., Schneider, F. J. Mol. Biol. (1996) [Pubmed]
  14. Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons. Miñana, M.D., Hermenegildo, C., Llsansola, M., Montoliu, C., Grisolía, S., Felipo, V. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  15. Radiolytic studies of trimethylamine dehydrogenase. Spectral deconvolution of the neutral and anionic flavin semiquinone, and determination of rate constants for electron transfer in the one-electron reduced enzyme. Anderson, R.F., Jang, M.H., Hille, R. J. Biol. Chem. (2000) [Pubmed]
  16. Correlation of x-ray deduced and experimental amino acid sequences of trimethylamine dehydrogenase. Barber, M.J., Neame, P.J., Lim, L.W., White, S., Matthews, F.S. J. Biol. Chem. (1992) [Pubmed]
  17. Specific roles of methylcobamide:coenzyme M methyltransferase isozymes in metabolism of methanol and methylamines in Methanosarcina barkeri. Ferguson, D.J., Krzycki, J.A., Grahame, D.A. J. Biol. Chem. (1996) [Pubmed]
  18. The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry. Packman, L.C., Mewies, M., Scrutton, N.S. J. Biol. Chem. (1995) [Pubmed]
  19. Molecular structure of trimethylamine dehydrogenase from the bacterium W3A1 at 6.0-A resolution. Lim, L.W., Shamala, N., Mathews, F.S., Steenkamp, D.J. J. Biol. Chem. (1984) [Pubmed]
  20. A nonsense mutation in the FMO3 gene underlies fishy off-flavor in cow's milk. Lundén, A., Marklund, S., Gustafsson, V., Andersson, L. Genome Res. (2002) [Pubmed]
  21. Mode of action of ammonia and amine on rRNA synthesis in Xenopus laevis embryonic cells. Shiokawa, K., Fu, Y.C., Kawazoe, Y., Yamana, K. Development (1987) [Pubmed]
  22. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. Santini, C.L., Bernadac, A., Zhang, M., Chanal, A., Ize, B., Blanco, C., Wu, L.F. J. Biol. Chem. (2001) [Pubmed]
  23. Suppression of flavin-containing monooxygenase by overproduced nitric oxide in rat liver. Park, C.S., Baek, H.M., Chung, W.G., Lee, K.H., Ryu, S.D., Cha, Y.N. Mol. Pharmacol. (1999) [Pubmed]
  24. Intracellular pH plays a role in regulating protein synthesis in Xenopus oocytes. Houle, J.G., Wasserman, W.J. Dev. Biol. (1983) [Pubmed]
  25. Stimulation of myocardial Na(+)-independent Cl(-)-HCO(3)(-) exchanger by angiotensin II is mediated by endogenous endothelin. de Hurtado, M.C., Alvarez, B.V., Ennis, I.L., Cingolani, H.E. Circ. Res. (2000) [Pubmed]
  26. The reaction of trimethylamine dehydrogenase with trimethylamine. Jang, M.H., Basran, J., Scrutton, N.S., Hille, R. J. Biol. Chem. (1999) [Pubmed]
  27. Chemical chaperones enhance superantigen and conventional antigen presentation by HLA-DM-deficient as well as HLA-DM-sufficient antigen-presenting cells and enhance IgG2a production in vivo. Ghumman, B., Bertram, E.M., Watts, T.H. J. Immunol. (1998) [Pubmed]
  28. Optimizing the Michaelis complex of trimethylamine dehydrogenase: identification of interactions that perturb the ionization of substrate and facilitate catalysis with trimethylamine base. Basran, J., Sutcliffe, M.J., Scrutton, N.S. J. Biol. Chem. (2001) [Pubmed]
  29. Influence of monovalent cations on the ultraviolet-visible spectrum of tryptophan tryptophylquinone-containing methylamine dehydrogenase from bacterium W3A1. Kuusk, V., McIntire, W.S. J. Biol. Chem. (1994) [Pubmed]
  30. Human flavin-containing monooxygenase form 3: cDNA expression of the enzymes containing amino acid substitutions observed in individuals with trimethylaminuria. Cashman, J.R., Bi, Y.A., Lin, J., Youil, R., Knight, M., Forrest, S., Treacy, E. Chem. Res. Toxicol. (1997) [Pubmed]
  31. Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Dolphin, C.T., Riley, J.H., Smith, R.L., Shephard, E.A., Phillips, I.R. Genomics (1997) [Pubmed]
  32. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Lang, D.H., Yeung, C.K., Peter, R.M., Ibarra, C., Gasser, R., Itagaki, K., Philpot, R.M., Rettie, A.E. Biochem. Pharmacol. (1998) [Pubmed]
  33. The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. Simon, G., Méjean, V., Jourlin, C., Chippaux, M., Pascal, M.C. J. Bacteriol. (1995) [Pubmed]
  34. The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. Gon, S., Patte, J.C., Méjean, V., Iobbi-Nivol, C. J. Bacteriol. (2000) [Pubmed]
  35. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. Jones, M., Talfournier, F., Bobrov, A., Grossmann, J.G., Vekshin, N., Sutcliffe, M.J., Scrutton, N.S. J. Biol. Chem. (2002) [Pubmed]
  36. A steady-state kinetic study of the reaction catalysed by the secondary-amine mono-oxygenase of Pseudomonas aminovorans. Brook, D.F., Large, P.J. Biochem. J. (1976) [Pubmed]
  37. Visualization of the enzyme trimethylamine oxide demethylase in isoelectric focusing gels by an enzyme-specific staining method. Havemeister, W., Rehbein, H., Steinhart, H., Gonzales-Sotelo, C., Krogsgaard-Nielsen, M., Jørgensen, B. Electrophoresis (1999) [Pubmed]
  38. A novel mutation in the flavin-containing monooxygenase 3 gene, FM03, that causes fish-odour syndrome: activity of the mutant enzyme assessed by proton NMR spectroscopy. Murphy, H.C., Dolphin, C.T., Janmohamed, A., Holmes, H.C., Michelakakis, H., Shephard, E.A., Chalmers, R.A., Phillips, I.R., Iles, R.A. Pharmacogenetics (2000) [Pubmed]
 
WikiGenes - Universities