The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

De novo expression of transfected human class 1 aldehyde dehydrogenase (ALDH) causes resistance to oxazaphosphorine anti-cancer alkylating agents in hamster V79 cell lines. Elevated class 1 ALDH activity is closely correlated with reduction in DNA interstrand cross-linking and lethality.

Human class 1 aldehyde dehydrogenase (hALDH-1) can oxidize aldophosphamide, a key aldehyde intermediate in the activation pathway of cyclophosphamide and other oxazaphosphorine (OAP) anti-cancer alkylating agents. Overexpression of class 1 ALDH (ALDH-1) has been observed in cells selected for survival in the presence of OAPs. We used transfection to induce de novo expression of human ALDH-1 in V79/SD1 Chinese hamster cells to clearly quantitate the role of hALDH-1 expression in OAP resistance. Messenger RNA levels correlated well with hALDH-1 protein levels and enzyme activities (1.5-13.6 milliunits/mg with propionaldehyde/NAD+ substrate, compared to < 1 milliunit/mg in controls) in individual clonal transfectant lines, and slot blot analysis confirmed the presence of the transfected cDNA. Expressed ALDH activity was closely correlated (r = 0.99) with resistance to mafosfamide, up to 21-fold relative to controls. Transfectants were cross-resistant to other OAPs but not to phosphoramide mustard, ifosfamide mustard, melphalan, or acrolein. Resistance was completely reversed by pretreatment with 25 microM diethylaminobenzaldehyde, a potent ALDH inhibitor. Alkaline elution studies showed that expression of ALDH-1 reduced the number of DNA cross-links commensurate with mafosfamide resistance, and this reduction in cross-links was fully reversed by the inhibitor. Thus, overexpression of human class 1 ALDH alone is sufficient to confer OAP-specific drug resistance.[1]


WikiGenes - Universities