The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A cb-type cytochrome-c oxidase terminates the respiratory chain in Helicobacter pylori.

A Helicobacter pylori membrane fraction oxidized yeast and equine cytochrome c, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). When ascorbate was used as reductant, the Vmax and apparent Km values were 612 nmol electron min-1 (mg protein)-1 and 14 microM for yeast, and 419 nmol electron min-1 (mg protein)-1 and 19 microM for equine cytochrome c, respectively. For TMPD oxidation, the Vmax and Km values were 640 nmol electron min-1 (mg protein)-1 and 182 microM, respectively. These oxidase activities showed a high affinity for oxygen. Inhibition of both cytochrome-c and TMPD oxidase activities by 50% was caused by about 4 microM cyanide and about 0.5 mM azide. Redox difference spectra of the membrane solubilized with Triton X-100 showed b- or c-type cytochromes but not aa3-type cytochromes. c-type and a part of some b-type cytochromes were reduced with ascorbate plus TMPD. A CO difference spectrum revealed that protohaem, but not an aa3-type cytochrome, may be interacting with CO/oxygen. Only protohaem was detected in the haem fraction extracted from the membrane. Three polypeptides (60, 38 and 29 kDa) were found to be bearing haem c after SDS-PAGE of the membrane. From these results, it was suggested that the cbb3-type cytochrome-c oxidase, having a haem-copper binuclear centre like the cytochrome aa3-type oxidase, but differing in a few other properties, functions as a terminal oxidase in the respiratory chain of H. pylori.[1]

References

  1. A cb-type cytochrome-c oxidase terminates the respiratory chain in Helicobacter pylori. Nagata, K., Tsukita, S., Tamura, T., Sone, N. Microbiology (Reading, Engl.) (1996) [Pubmed]
 
WikiGenes - Universities