The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors.

Stimulation of two metabotropic glutamate-receptor subtypes, mGluR1 and mGluR5, triggers the release of Ca2+ from intracellular stores through the inositol-(1,4,5) trisphosphate (InsP3) pathway. Here we report that glutamate induces single-peaked intracellular Ca2+ mobilization in mGluR1alpha-transfected cells but elicits Ca2+ oscillations in mGluR5a-transfected cells. The response patterns of the intracellular Ca2+ increase depend upon the identity of a single amino acid, aspartate (at position 854) or threonine (at position 840), located within the G-protein-interacting domains of mGluR1alpha and mGluR5a, respectively. Pharmacological and peptide mapping analyses indicated that phosphorylation of the threonine residue at position 840 of mGluR5a by protein kinase C ( PKC) is responsible for the generation of Ca2+ oscillations in mGluR5a-expressing cells. To our knowledge this is the first evidence that PKC phosphorylation of G-protein-coupled receptors is important in producing oscillations in intracellular Ca2+ signalling.[1]

References

  1. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Kawabata, S., Tsutsumi, R., Kohara, A., Yamaguchi, T., Nakanishi, S., Okada, M. Nature (1996) [Pubmed]
 
WikiGenes - Universities