The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sodium-dependent carnitine transport in human placental choriocarcinoma cells.

The JAR human placental choriocarcinoma cells were found to transport carnitine into the intracellular space by a Na(+)-dependent process. The transport showed no requirement for anions. The Na+-dependent process was saturable and the apparent Michaelis-Menten constant for carnitine was 12.3 +/- 0.5 microM. Na+ activated the transport by increasing the affinity of the transport system for carnitine. The transport system specifically interacted with L-carnitine, D-carnitine, acetyl-DL-carnitine and betaine. 6-N-Trimethyllysine and choline had little or no effect on carnitine transport. Of the total transport measured, transport into the intracellular space represented 90%. Plasma membrane vesicles prepared from JAR cells were found to bind carnitine in a Na(+)-dependent manner. The binding was saturable with an apparent dissociation constant of 0.66 +/- 0.08 microM. The binding process was specific for L-carnitine, D-carnitine, acetyl-DL-carnitine, and betaine. 6-N-Trimethyllysine and choline showed little or no affinity. It is concluded that the JAR cells express a Na(+)-dependent high-affinity system for carnitine transport and that the Na(+)-dependent high-affinity carnitine binding detected in purified JAR cell plasma membrane vesicles is possibly related to the transmembrane transport process.[1]

References

  1. Sodium-dependent carnitine transport in human placental choriocarcinoma cells. Prasad, P.D., Huang, W., Ramamoorthy, S., Carter, A.L., Leibach, F.H., Ganapathy, V. Biochim. Biophys. Acta (1996) [Pubmed]
 
WikiGenes - Universities