The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate.

Articular cartilage vesicles (ACV), isolated by differential centrifugation of adult hyaline articular cartilage collagenase digests, mineralized in the presence of calcium and ATP. Mineral analysis by microscopy, chemical analysis, energy-dispersive analysis, and infrared spectroscopy revealed crystals resembling calcium pyrophosphate dihydrate (CPPD). Adult articular cartilage also underwent ATP-dependent mineralization, supporting the contention that vesicles in situ fostered adult articular cartilage mineralization. Phosphocitrate (PC) is a recognized in vitro inhibitor of hydroxyapatite and calcium oxalate monohydrate crystal formation, but it is not known whether PC can similarly restrict CPPD crystal development. In the present study we examine the effect of PC, citrate, and n-sulfo-2-amino-tricarballylate (SAT, a PC analogue) on the ATP-induced CPPD crystal formation in both ACV and articular cartilage models. Only PC (10-1000 microM) blocked both the ATP-dependent and -independent mineralization in ACV in a dose-dependent fashion. At 1 mM, SAT and citrate blocked the ATP-independent mineralization. Similarly, only PC blocked both the ATP- and non-ATP-dependent mineralization in native articular cartilage slices. PC, SAT, and citrate had no effect on ACV nucleoside triphosphate pyrophosphohydrolase activity, suggesting that none of these agents blocked mineralization through the inhibition of nucleoside triphosphate pyrophosphohydrolase activity, which generates inorganic pyrophosphate from ATP.[1]

References

 
WikiGenes - Universities