Insulin signaling and its regulation of system A amino acid uptake in cultured rat vascular smooth muscle cells.
Hyperinsulinemia has been recognized as an independent risk factor for atherosclerosis. However, its exact mechanisms are still unclear. In our previous work, we showed that 10 nmol/L insulin stimulated neither mitogen-activated protein kinase (MAP kinase) activity nor [3H]thymidine incorporation but did stimulated S6 kinase through the specific insulin receptors in cultured rat vascular smooth muscle cells (VSMCs). In this study, we observed that > or = 1 nmol/L insulin stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and activated IRS-1-dependent phosphatidylinositol 3'-kinase (PI 3'-kinase) and p70 S6 kinase (p70S6K) but not MAP kinase (extracellular signal-regulated kinase 2) and p90 S6 kinase (p90RSK). However, 10 nmol/L insulin-like growth factor I stimulated all these pathways. Finally, 10 nmol/L insulin stimulated alpha-amino-isobutyric acid (AIB) uptake, and wortmannin (100 nmol/L) completely inhibited insulin-stimulated AIB uptake, whereas rapamycin (20 nmol/L) had no such effect. Furthermore, cycloheximide (10 micrograms/mL) completely inhibited insulin-stimulated AIB uptake, but actinomycin D (5 micrograms/mL) failed to inhibit this. Thus, we reached the following conclusions: (1) Insulin (1 nmol/L) induced phosphorylation of IRS-1 and activated the PI 3'-kinase and p70S6K pathways in VSMCs, even though 10 nmol/L insulin did not significantly stimulate MAP kinase or p90RSK. (2) Stimulation of AIB uptake by insulin was regulated at the translational level via wortmannin-sensitive pathways but not p70S6K pathways.[1]References
- Insulin signaling and its regulation of system A amino acid uptake in cultured rat vascular smooth muscle cells. Obata, T., Kashiwagi, A., Maegawa, H., Nishio, Y., Ugi, S., Hidaka, H., Kikkawa, R. Circ. Res. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg