The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Differential effects of diet and obesity on high and low affinity sulfonylurea binding sites in the rat brain.

The brain contains neurons which alter their firing rates when ambient glucose concentrations change. An ATP-sensitive K+ (Katp) channel on these neurons closes and increases cell firing when ATP is produced by intracellular glucose metabolism. Binding of the antidiabetic sulfonylurea drugs to a site linked to this channel has a similar effect. Here rats with a propensity to develop diet-induced obesity (DIO) or to be diet-resistant (DR) when fed a diet moderately high in fat, energy and sucrose (HE diet) had low and high affinity sulfonylurea binding assessed autoradiographically with [3H]glyburide in the presence or absence of Gpp(NH)p. Before HE diet exposure, chow-fed DIO- and DR-prone rats were separated by their high vs. low 24 h urine NE levels. In DR-prone rats, low affinity [3H]glyburide binding sites comprised up to 45% of total binding with highest concentrations in the hypothalamus and amygdala. But DIO-prone rats had few or no low affinity binding sites throughout the forebrain. High affinity [3H]glyburide binding was similar between phenotypes. When rats developed DIO after 3 months on HE diet, their low affinity binding increased slightly. DR rats fed the HE diet gained the same amount of weight as chow-fed controls but their low affinity binding sites were reduced to DIO levels and both were significantly lower than chow-fed controls. By contrast, high affinity [3H]glyburide binding was increased in DR rats throughout the forebrain so that it significantly exceeded that in both DIO and chow-fed control rats. These studies demonstrate a significant population of low affinity sulfonylurea binding sites throughout the forebrain which, along with high affinity sites, are regulated as a function of both weight gain phenotype and diet composition.[1]

References

 
WikiGenes - Universities