The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential regulation of neurogenesis by the two Xenopus GATA-1 genes.

Previously, we have shown that the ventralizing factor bone morphogenetic protein 4 (BMP-4) can inhibit Xenopus neurogenesis. The erythroid transcription factor GATA-1 functions downstream of the BMP-4 signaling pathway and mediates BMP-4-induced erythropoiesis. We have found that similar to BMP-4, GATA-1b inhibits neuralization of Xenopus animal cap (AC) cells. The neural inhibition is not seen with GATA-1a, although both GATA-1a and GATA-1b RNAs are translated at the same efficiency and induce globin expression equally in AC cells. GATA-1b RNA injection into AC cells neither induces expression of Xbra (a general mesoderm marker) nor affects expression of XK81 (epidermal keratin) or BMP-4 and Xvent-1 (two ventral markers). These data suggest that GATA-1b retains the epidermal fate of the AC. Intact GATA-1b protein is required for both inhibition of neurogenesis and induction of globin expression. Our findings indicate that GATA-1b can function in ectoderm to specifically regulate neural inducing mechanisms, apparently related to the expression of chordin, a neuralizing gene. Furthermore, tadpole stage embryos injected with GATA-1b are devoid of all dorsoanterior structures including neural tissue. This report provides evidence that the two transcription factors, derived from a recent genome duplication, share a common biological activity (stimulation of erythropoiesis) while also exhibiting a distinct function (inhibition of neurogenesis).[1]

References

  1. Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Xu, R.H., Kim, J., Taira, M., Lin, J.J., Zhang, C.H., Sredni, D., Evans, T., Kung, H.F. Mol. Cell. Biol. (1997) [Pubmed]
 
WikiGenes - Universities