The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.

CD38, a type II transmembrane glycoprotein predominantly expressed in blood cells, is a bifunctional ectoenzyme directly involved in the metabolism of cADP-ribose (cADPR). This is a potent Ca2+ mobilizer in several types of cells. The relationship between the ectocellular site of cADPR production and its intracellular calcium-related functions is poorly understood. Cultured rat cerebellar granule cells showed both enzymic activities of CD38, ADP-ribosyl cyclase and cADPR hydrolase, at a ratio of 16 to 1 respectively, and were immunostained by the anti-(human CD38) monoclonal antibody IB4. In these cells externally added cADPR and beta-NAD+ (the precursor of cADPR), but not alpha-NAD+ or ADP-ribose, enhanced the peak of the depolarization-induced rise in intracellular Ca2+ concentration. This effect was inhibited by 1 microM ryanodine, suggesting a potentiation of calcium-induced calcium release by cADPR. CD38 ectoenzyme activities, ADP-ribosyl cyclase and cADPR hydrolase, were also demonstrated in vivo by microdialysis of adult rat cerebellum, where IB4 bound to granule neurons selectively. Trace amounts (11.5 +/- 3.8 nM) of NAD+ were detected by microdialysis sampling and sensitive assays in the basal interstitial fluid of the cerebellum. These results provide a link between ectocellular cADPR turnover and intracellular calcium mobilization in cerebellum.[1]


  1. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. De Flora, A., Guida, L., Franco, L., Zocchi, E., Pestarino, M., Usai, C., Marchetti, C., Fedele, E., Fontana, G., Raiteri, M. Biochem. J. (1996) [Pubmed]
WikiGenes - Universities