The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens.

Pseudomonas fluorescens strain LP6a, isolated from petroleum condensate-contaminated soil, utilizes the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, anthracene and 2-methylnaphthalene as sole carbon and energy sources. The isolate also co-metabolically transforms a suite of PAHs and heterocycles including fluorene, biphenyl, acenaphthene, 1-methylnaphthalene, indole, benzothiophene, dibenzothiophene and dibenzofuran, producing a variety of oxidized metabolites. A 63 kb plasmid (pLP6a) carries genes encoding enzymes necessary for the PAH-degrading phenotype of P. fluorescens LP6a. This plasmid hybridizes to the classical naphthalene degradative plasmids NAH7 and pWW60, but has different restriction endonuclease patterns. In contrast, plasmid pLP6a failed to hybridize to plasmids isolated from several phenanthrene-utilizing strains which cannot utilize naphthalene. Plasmid pLP6a exhibits reproducible spontaneous deletions of a 38 kb region containing the degradative genes. Two gene clusters corresponding to the archetypal naphthalene degradation upper and lower pathway operons, separated by a cryptic region of 18 kb, were defined by transposon mutagenesis. Gas chromatographic-mass spectrometric analysis of metabolites accumulated by selected transposon mutants indicates that the degradative enzymes encoded by genes on pLP6a have a broad specificity permitting the oxidation of a suite of polycyclic aromatic and heterocyclic substrates.[1]


WikiGenes - Universities