The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

a-thiafluorene     dibenzothiophene

Synonyms: PubChem7382, CPD-942, SureCN13294, CHEMBL219828, NSC-2843, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dibenzothiophene

 

High impact information on dibenzothiophene

  • Equilibrium studies on the series of [CpRu(CO)(2)(eta(1)(S)-DBTh)](+) compounds, where DBTh = DBT, 4-MeDBT, 4,6-Me(2)DBT, and 2,8-Me(2)DBT, show that the relative binding strengths of the dibenzothiophene ligands increase in the order 4,6-Me(2)DBT (1) < 4-MeDBT (20.2(1)) < DBT (62.7(6)) < 2,8-Me(2)DBT (223(3)) [6].
  • X-ray studies of 1 and its 4-methyldibenzothiophene and dibenzothiophene analogues, [CpRu(CO)(2)(eta(1)(S)-4-MeDBT)]BF(4) (2) and [CpRu(CO)(2)(eta(1)(S)-DBT)]BF(4) (3), show that the Ru-S bond distances increase in the order, 3 < 2 < 1 [6].
  • The sonochemically prepared catalysts were characterized by elemental analysis, XPS, SEM, TEM, and XEDS, and hydrodesulfurization (HDS) activity evaluated for thiophene and dibenzothiophene substrates [7].
  • The dibenzothiophene 32{38} sensitized HeLa cells to ionizing radiation in vitro, with dose modification factors of 2.5 at 10% survival being observed at 0.5 microM [8].
  • The resultant strain, Rhodococcus erythropolis XPDN, could simultaneously transform the model pollutants dibenzothiophene, carbazole, and dibenzofuran to nontoxic metabolites and may have an application potential for bioremediation [9].
 

Chemical compound and disease context of dibenzothiophene

 

Biological context of dibenzothiophene

 

Anatomical context of dibenzothiophene

 

Associations of dibenzothiophene with other chemical compounds

 

Gene context of dibenzothiophene

 

Analytical, diagnostic and therapeutic context of dibenzothiophene

References

  1. Crystal Structure and Desulfurization Mechanism of 2'-Hydroxybiphenyl-2-sulfinic Acid Desulfinase. Lee, W.C., Ohshiro, T., Matsubara, T., Izumi, Y., Tanokura, M. J. Biol. Chem. (2006) [Pubmed]
  2. Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L., Ma, C. Appl. Environ. Microbiol. (2005) [Pubmed]
  3. Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Monticello, D.J., Bakker, D., Finnerty, W.R. Appl. Environ. Microbiol. (1985) [Pubmed]
  4. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Koch, D.J., Rückert, C., Rey, D.A., Mix, A., Pühler, A., Kalinowski, J. Appl. Environ. Microbiol. (2005) [Pubmed]
  5. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Omori, T., Monna, L., Saiki, Y., Kodama, T. Appl. Environ. Microbiol. (1992) [Pubmed]
  6. Synthetic, structural and binding studies of the 4,6-dimethyldibenzothiophene complex [(eta(5)-C(5)Me(5))Ru(CO)(2)(eta(1)(S)-4,6-Me(2)DBT)]BF(4): toward an understanding of deep hydrodesulfurization. Vecchi, P.A., Ellern, A., Angelici, R.J. J. Am. Chem. Soc. (2003) [Pubmed]
  7. Sonochemical preparation of supported hydrodesulfurization catalysts. Dhas, N.A., Ekhtiarzadeh, A., Suslick, K.S. J. Am. Chem. Soc. (2001) [Pubmed]
  8. Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. Hardcastle, I.R., Cockcroft, X., Curtin, N.J., El-Murr, M.D., Leahy, J.J., Stockley, M., Golding, B.T., Rigoreau, L., Richardson, C., Smith, G.C., Griffin, R.J. J. Med. Chem. (2005) [Pubmed]
  9. Simultaneous biodetoxification of s, N, and o pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Yu, B., Ma, C., Zhou, W., Zhu, S., Wang, Y., Qu, J., Li, F., Xu, P. Appl. Environ. Microbiol. (2006) [Pubmed]
  10. Selective biodegradation of S and N heterocycles by a recombinant Rhodococcus erythropolis strain containing carbazole dioxygenase. Yu, B., Xu, P., Zhu, S., Cai, X., Wang, Y., Li, L., Li, F., Liu, X., Ma, C. Appl. Environ. Microbiol. (2006) [Pubmed]
  11. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Matsubara, T., Ohshiro, T., Nishina, Y., Izumi, Y. Appl. Environ. Microbiol. (2001) [Pubmed]
  12. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. Lei, B., Tu, S.C. J. Bacteriol. (1996) [Pubmed]
  13. Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage. Van Hamme, J.D., Fedorak, P.M., Foght, J.M., Gray, M.R., Dettman, H.D. Appl. Environ. Microbiol. (2004) [Pubmed]
  14. Identification of disulfides from the biodegradation of dibenzothiophene. Bressler, D.C., Fedorak, P.M. Appl. Environ. Microbiol. (2001) [Pubmed]
  15. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Piddington, C.S., Kovacevich, B.R., Rambosek, J. Appl. Environ. Microbiol. (1995) [Pubmed]
  16. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. Li, M.Z., Squires, C.H., Monticello, D.J., Childs, J.D. J. Bacteriol. (1996) [Pubmed]
  17. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. Denome, S.A., Oldfield, C., Nash, L.J., Young, K.D. J. Bacteriol. (1994) [Pubmed]
  18. Stereoselective synthesis of 2-hydroxy-alpha-mannopyranosides from glucal donors. Kim, J.Y., Di Bussolo, V., Gin, D.Y. Org. Lett. (2001) [Pubmed]
  19. Cloning, analysis, and overexpression of the gene encoding isobutylamine N-hydroxylase from the valanimycin producer, Streptomyces viridifaciens. Parry, R.J., Li, W., Cooper, H.N. J. Bacteriol. (1997) [Pubmed]
  20. Mutagenic activity of methyl-substituted tri- and tetracyclic aromatic sulfur heterocycles. McFall, T., Booth, G.M., Lee, M.L., Tominaga, Y., Pratap, R., Tedjamulia, M., Castle, R.N. Mutat. Res. (1984) [Pubmed]
  21. Comparative analysis of phenotypic and genotypic characteristics of two desulfurizing bacterial strains, Mycobacterium phlei SM120-1 and Mycobacterium phlei GTIS10. Srinivasaraghavan, K., Sarma, P.M., Lal, B. Lett. Appl. Microbiol. (2006) [Pubmed]
  22. Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, K., Tanaka, A. Appl. Microbiol. Biotechnol. (2001) [Pubmed]
  23. Radical cation of dibenzothiophene fully annelated with bicyclo[2.2.2]octene units: X-ray crystal structure and electronic properties. Yamazaki, D., Nishinaga, T., Komatsu, K. Org. Lett. (2004) [Pubmed]
  24. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Incardona, J.P., Collier, T.K., Scholz, N.L. Toxicol. Appl. Pharmacol. (2004) [Pubmed]
  25. Microbial desulfurization of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09. Matsui, T., Hirasawa, K., Konishi, J., Tanaka, Y., Maruhashi, K., Kurane, R. Appl. Microbiol. Biotechnol. (2001) [Pubmed]
  26. Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. Li, F., Zhang, Z., Feng, J., Cai, X., Xu, P. J. Biotechnol. (2007) [Pubmed]
  27. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Reichmuth, D.S., Hittle, J.L., Blanch, H.W., Keasling, J.D. Biotechnol. Bioeng. (2000) [Pubmed]
  28. P450 catalysed S-oxidation of dibenzothiophene by Cunninghamella elegans. Schlenk, D., Bevers, R.J., Vertino, A.M., Cerniglia, C.E. Xenobiotica (1994) [Pubmed]
  29. Identification of the gene encoding a NAD(P)H-flavin oxidoreductase coupling with dibenzothiophene (DBT)-desulfurizing enzymes from the DBT-nondesulfurizing bacterium Paenibacillus polymyxa A-1. Ishii, Y., Ohshiro, T., Aoi, Y., Suzuki, M., Izumi, Y. J. Biosci. Bioeng. (2000) [Pubmed]
  30. Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. Ishii, Y., Konishi, J., Suzuki, M., Maruhashi, K. J. Biosci. Bioeng. (2000) [Pubmed]
  31. Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Denis-Larose, C., Labbé, D., Bergeron, H., Jones, A.M., Greer, C.W., al-Hawari, J., Grossman, M.J., Sankey, B.M., Lau, P.C. Appl. Environ. Microbiol. (1997) [Pubmed]
  32. Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization. Ohshiro, T., Izumi, Y. Bioseparation (2000) [Pubmed]
  33. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Tanaka, Y., Yoshikawa, O., Maruhashi, K., Kurane, R. Arch. Microbiol. (2002) [Pubmed]
  34. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Brezna, B., Kweon, O., Stingley, R.L., Freeman, J.P., Khan, A.A., Polek, B., Jones, R.C., Cerniglia, C.E. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
 
WikiGenes - Universities