The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway.

The salt-instigated protein expression of Saccharomyces cerevisiae during growth in either 0.7 or 1.4 M NaCl was studied by two-dimensional polyacrylamide gel electrophoresis. The 73 protein spots that were identified as more than 3-fold responsive in 1.4 M NaCl were further grouped by response class (halometric, low-salt, and high-salt regulation). Roughly 40% of these responsive proteins were found to decrease in expression, while at higher magnitudes of change (>8-fold) only induction was recorded. Enolase 1 (Eno1p) was the most increasing protein by absolute numbers per cell, but not by -fold change, and the enzymes involved in glycerol synthesis, Gpd1p and Gpp2p, were also induced to a similar degree as Eno1p. We furthermore present evidence for salt induction of glycerol dissimilation via dihydroxyacetone and also identify genes putatively encoding the two enzymes involved; dihydroxyacetone kinase (DAK1 and DAK2) and glycerol dehydrogenase (YPR1 and GCY1). The GPD1, GPP2, GCY1, DAK1, and ENO1 genes all displayed a halometric increase in the amount of transcript. This increase was closely linked to the salt-induced rate of protein synthesis of the corresponding proteins, indicating mainly transcriptional regulation of expression for these genes. A consensus element with homology to the URS sequence of the ENO1 promoter was found in the promoters of the GPD1, GPP2, GCY1, and DAK1 genes.[1]

References

 
WikiGenes - Universities