Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins.
The Rho family of small GTPases are critical elements involved in the regulation of signal transduction cascades from extracellular stimuli to the cell nucleus, including the JNK/ SAPK signaling pathway, the c-fos serum response factor, and the p70 S6 kinase. Here we report a novel signaling pathway activated by the Rho proteins that may be responsible for their biological activities, including cytoskeleton organization, transformation, apoptosis, and metastasis. The human RhoA, CDC42, and Rac-1 proteins efficiently induce the transcriptional activity of nuclear factor kappaB (NF-kappaB) by a mechanism that involves phosphorylation of Ikappa Balpha and translocation of p50/ p50 and p50/ p65 dimers to the nucleus, but independent of the Ras GTPase and the Raf-1 kinase. We also show that activation of NF-kappaB by TNFalpha depends on CDC42 and RhoA, but not Rac-1 proteins, because this activity is drastically inhibited by their respective dominant-negative mutants. In contrast, activation of NF-kappaB by UV light was not affected by Rho, CDC42, or Rac-1 dominant-negative mutants. Thus, members of the Rho family of GTPases are involved specifically in the regulation of NF-kappaB-dependent transcription.[1]References
- Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Perona, R., Montaner, S., Saniger, L., Sánchez-Pérez, I., Bravo, R., Lacal, J.C. Genes Dev. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg