The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo.

During development, the sympathetic innervation of two targets, sweat glands and periosteum, changes the neurotransmitters it expresses from noradrenaline to acetylcholine and vasoactive intestinal peptide (VIP). The target-derived molecules that induce, these changes have not been identified. Neuropoietic cytokines, including ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), induce the same phenotypic changes in sympathetic neurons in vitro as sweat glands and periosteum do in vivo, raising the possibility that one of these factors mediates induction of cholinergic traits and VIP by these target tissues. Because CNTF and LIF have overlapping functions and signalling pathways, they could act interchangeably or in concert to influence neurotransmitter expression. To determine whether CNTF or CNTF and LIF together are responsible for the induction of cholinergic and peptidergic function in vivo, we analyzed the neurotransmitter properties of sweat gland innervation in mice lacking CNTF or CNTF and LIF. We find that, as in wild-type mice, gland innervation in mice lacking one or both molecules appropriately expresses cholinergic properties and VIP immunoreactivity. Furthermore, footpads of mice lacking one or both genes contain choline acetyltransferase activity comparable to that of wild-type mice, and CNTF- or CNTF/LIF-deficient mice possess the normal complement of active sweat glands. We analyzed the innervation of a second, recently identified cholinergic sympathetic target, the periosteum, which is the connective tissue surrounding bone. Periosteal innervation of mice lacking CNTF, LIF, or both, like that of wild-type mice, is immunoreactive for the vesicular acetylcholine transporter, a recently identified cholinergic marker, and VIP. These results provide evidence that neither CNTF, LIF, nor a combination of the two are required for the developmental change from noradrenergic to cholinergic function that occurs in sympathetic innervation of sweat glands and periosteum.[1]


WikiGenes - Universities