The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Periosteum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Periosteum

  • Consequently, we compared the effects of conditioned medium (CM) from 2 human breast-cancer cell lines, MB-MDA-231 and MCF-7, with those of a normal human breast epithelial cell line, HME, on osteoclastic fusion, resorptive activity and migration from the periosteum to the developing marrow cavity of fetal mouse metatarsals in culture [1].
  • The MLV vector expressing this BMP-2/4 hybrid gene or beta-galactosidase control gene was administered at the lateral side of the fracture periosteum at 1 day after fracture in the rat femoral fracture model [2].
  • BMP-2 and BMP-4 also delayed hypertrophy of chondrocytes and formation of the osteogenic periosteum [3].
  • Consequently, intermittent treatment with PTH increased the formation of cortical bone dose dependently, at both the periosteum and the endosteum and increased the bone mass of these growing rats, with no change in the body weight gain or femoral growth rate compared with the control animals [4].
  • It is concluded that, under these experimental conditions, prostaglandin E2 stimulated both resorption and formation along the periosteum and only bone resorption along the endosteum of the cultured bones [5].
 

High impact information on Periosteum

  • The r/r mice were not resistant to other skeletal effects of PTH because abundant interstitial collagenase mRNA was detected in the calvarial periosteum of PTH-treated, but not vehicle-treated, r/r and +/+ mice [6].
  • In the transgenic model, the HB-GAM expression is maintained in mesenchymal tissues with the highest expression in the periosteum [7].
  • In the adjuvant-induced injury model, the expression of HB-GAM and of N-syndecan is strongly upregulated in the periosteum accompanying the regenerative response of bone [7].
  • DNIIR mRNA expression was localized to the periosteum/perichondrium, syno-vium, and articular cartilage [8].
  • During the preblastema stages of regeneration, FGFR2 expression is observed in the basal layer of the wound epithelium and in the cells of the periosteum [9].
 

Chemical compound and disease context of Periosteum

 

Biological context of Periosteum

 

Anatomical context of Periosteum

 

Associations of Periosteum with chemical compounds

  • The efficacy of piroxicam versus placebo was studied in a double-blind, randomized trial of 74 patients with traumatic injury of muscle, periosteum, bursa, or ankle joint [22].
  • This biphasic action of estrogen on the periosteum may result from a direct effect on its receptor, either alpha or beta, but may also depend on changes in serum IGF-I [23].
  • When the central osteoblast-rich bone and periosteum were analyzed separately, the inhibitory effect of PGE2, with or without indomethacin, was confined to the central bone [24].
  • There was a dose- and time-dependent inhibition of thymidine incorporation into DNA in the periosteum which was significant at 24 h [17].
  • Bovine PTH (5U/ml equal to 4.2 times 10-7M) significantly increased the concentration of cyclic AMP/mug DNA in periosteum, osteoblasts, and osteocytes but not in marrow cells [25].
 

Gene context of Periosteum

 

Analytical, diagnostic and therapeutic context of Periosteum

References

  1. Human breast-cancer cells stimulate the fusion, migration and resorptive activity of osteoclasts in bone explants. Tumber, A., Morgan, H.M., Meikle, M.C., Hill, P.A. Int. J. Cancer (2001) [Pubmed]
  2. In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Rundle, C.H., Miyakoshi, N., Kasukawa, Y., Chen, S.T., Sheng, M.H., Wergedal, J.E., Lau, K.H., Baylink, D.J. Bone (2003) [Pubmed]
  3. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Duprez, D., Bell, E.J., Richardson, M.K., Archer, C.W., Wolpert, L., Brickell, P.M., Francis-West, P.H. Mech. Dev. (1996) [Pubmed]
  4. Parathyroid hormone (1-34) and (1-84) stimulate cortical bone formation both from periosteum and endosteum. Oxlund, H., Ejersted, C., Andreassen, T.T., Tørring, O., Nilsson, M.H. Calcif. Tissue Int. (1993) [Pubmed]
  5. PGE2 stimulates both resorption and formation of bone in vitro: differential responses of the periosteum and the endosteum in fetal rat long bone cultures. Nefussi, J.R., Baron, R. Anat. Rec. (1985) [Pubmed]
  6. Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. Zhao, W., Byrne, M.H., Boyce, B.F., Krane, S.M. J. Clin. Invest. (1999) [Pubmed]
  7. Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). Imai, S., Kaksonen, M., Raulo, E., Kinnunen, T., Fages, C., Meng, X., Lakso, M., Rauvala, H. J. Cell Biol. (1998) [Pubmed]
  8. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. Serra, R., Johnson, M., Filvaroff, E.H., LaBorde, J., Sheehan, D.M., Derynck, R., Moses, H.L. J. Cell Biol. (1997) [Pubmed]
  9. Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Poulin, M.L., Patrie, K.M., Botelho, M.J., Tassava, R.A., Chiu, I.M. Development (1993) [Pubmed]
  10. Disposition of alendronate following local delivery in a rat jaw. Yaffe, A., Binderman, I., Breuer, E., Pinto, T., Golomb, G. J. Periodontol. (1999) [Pubmed]
  11. Histological reaction of auditory bulla bone to synthetic auditory ossicle (Apaceram) in rats. Tran, Y.H., Ohsaki, K., Ii, K., Ye, Q., Yokozeki, M., Moriyama, K. J. Med. Invest. (2000) [Pubmed]
  12. Cervicogenic headache. Long-term results of radiofrequency treatment of the planum nuchale. Sjaastad, O., Stolt-Nielsen, A., Blume, H., Zwart, J.A., Fredriksen, T.A. Funct. Neurol. (1995) [Pubmed]
  13. Dexamethasone effects on induction of neoplastic transformation by Fujinami sarcoma virus in an in vitro chick embryo periosteal model for osteosarcoma. Birek, C., Pawson, T., McCulloch, C.A., Tenenbaum, H.C. Cancer Res. (1988) [Pubmed]
  14. Effects of thyroxine on cortical bone remodeling in adult dogs: a histomorphometric study. High, W.B., Capen, C.C., Black, H.E. Am. J. Pathol. (1981) [Pubmed]
  15. Inhibiting and stimulating effects of TGF-beta 1 on osteoclastic bone resorption in fetal mouse bone organ cultures. Dieudonné, S.C., Foo, P., van Zoelen, E.J., Burger, E.H. J. Bone Miner. Res. (1991) [Pubmed]
  16. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. Yao, Z., Lafage-Proust, M.H., Plouët, J., Bloomfield, S., Alexandre, C., Vico, L. J. Bone Miner. Res. (2004) [Pubmed]
  17. Cortisol decreases bone formation by inhibiting periosteal cell proliferation. Chyun, Y.S., Kream, B.E., Raisz, L.G. Endocrinology (1984) [Pubmed]
  18. Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. de Hooge, A.S., van de Loo, F.A., Bennink, M.B., de Jong, D.S., Arntz, O.J., Lubberts, E., Richards, C.D., vandDen Berg, W.B. Am. J. Pathol. (2002) [Pubmed]
  19. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. Horiuchi, K., Amizuka, N., Takeshita, S., Takamatsu, H., Katsuura, M., Ozawa, H., Toyama, Y., Bonewald, L.F., Kudo, A. J. Bone Miner. Res. (1999) [Pubmed]
  20. Molecular cloning and expression of rat and mouse B61 gene: implications on organogenesis. Takahashi, H., Ikeda, T. Oncogene (1995) [Pubmed]
  21. Adhesion molecules in skeletogenesis: I. Transient expression of neural cell adhesion molecules (NCAM) in osteoblasts during endochondral and intramembranous ossification. Lee, Y.S., Chuong, C.M. J. Bone Miner. Res. (1992) [Pubmed]
  22. Piroxicam and naproxen in acute sports injuries. Lereim, P., Gabor, I. Am. J. Med. (1988) [Pubmed]
  23. Clinical Review: Sex steroids and the periosteum--reconsidering the roles of androgens and estrogens in periosteal expansion. Vanderschueren, D., Venken, K., Ophoff, J., Bouillon, R., Boonen, S. J. Clin. Endocrinol. Metab. (2006) [Pubmed]
  24. Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Raisz, L.G., Fall, P.M. Endocrinology (1990) [Pubmed]
  25. Cyclic 3', 5'-adenosine monophosphate levels in separated bone cells. Smith, D.M., Johnston, C.C. Endocrinology (1975) [Pubmed]
  26. Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. Ishidou, Y., Kitajima, I., Obama, H., Maruyama, I., Murata, F., Imamura, T., Yamada, N., ten Dijke, P., Miyazono, K., Sakou, T. J. Bone Miner. Res. (1995) [Pubmed]
  27. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. Grzesik, W.J., Robey, P.G. J. Bone Miner. Res. (1994) [Pubmed]
  28. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. Hainfellner, J.A., Voigtländer, T., Ströbel, T., Mazal, P.R., Maddalena, A.S., Aguzzi, A., Budka, H. J. Neuropathol. Exp. Neurol. (2001) [Pubmed]
  29. Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis. Wang, E., Wang, J., Chin, E., Zhou, J., Bondy, C.A. Endocrinology (1995) [Pubmed]
  30. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Salih, D.A., Mohan, S., Kasukawa, Y., Tripathi, G., Lovett, F.A., Anderson, N.F., Carter, E.J., Wergedal, J.E., Baylink, D.J., Pell, J.M. Endocrinology (2005) [Pubmed]
  31. Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Hashimoto, J., Yoshikawa, H., Takaoka, K., Shimizu, N., Masuhara, K., Tsuda, T., Miyamoto, S., Ono, K. Bone (1989) [Pubmed]
  32. Morphological study of recombinant human transforming growth factor beta 1-induced intramembranous ossification in neonatal rat parietal bone. Tanaka, T., Taniguchi, Y., Gotoh, K., Satoh, R., Inazu, M., Ozawa, H. Bone (1993) [Pubmed]
  33. Evidence for direct actions of melanocortin peptides on bone metabolism. Dumont, L.M., Wu, C.S., Tatnell, M.A., Cornish, J., Mountjoy, K.G. Peptides (2005) [Pubmed]
  34. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat. Wolfárd, A., Császár, J., Gera, L., Petri, A., Simonka, J.A., Balogh, A., Boros, M. Microcirculation (New York, N.Y. : 1994) (2002) [Pubmed]
 
WikiGenes - Universities