The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glucose-6-phosphatase structure, regulation, and function: an update.

Work on the glucose-6-phosphatase system has intensified and diversified extensively in the past 3 years. The gene for the catalytic unit of the liver enzyme has been cloned from three species, and regulation at the level of gene expression is being studied in several laboratories worldwide. More than 20 sites of mutation in the catalytic unit protein have been demonstrated to underlie glycogenesis type 1a. inhibition of glucose-6-P hydrolysis by several newly identified competitive and time-dependent, irreversible inhibitors has been demonstrated and in several instances the predicted effects on liver glycogen formation and/or breakdown and on blood glucose production have been shown. Refinements in and additions to the presently dominant "substrate transport-catalytic unit" topological model for the glucose-6-phosphatase system have been made. A new model alternative to this, based on the "combined conformational flexibility-substrate transport" concept, has emerged. Experimental evidence for the phosphorylation of glucose in liver by high-K(m),glucose enzyme(s) in addition to glucokinase has continued to emerge, and new in vitro evidence supportive of biosynthetic functions of the glucose-6-phosphatase system in this role has appeared. High levels of multifunctional glucose-6-phosphatase have been shown present in pancreatic islet beta cells. Glucose-6-P has been established as the likely insulin secretagog in beta cells. Interesting differences in the temporal responses of glucose-6-phosphatase in kidney and liver have been demonstrated. An initial attempt is made here to meld the hepatic and pancreatic islet beta-cell glucose-6-phosphatase systems, and to a lesser extent the kidney tubular and small intestinal mucosal glucose-6-phosphatase systems into an integrated, coordinated mechanism involved in whole-body glucose homeostasis in health and disease.[1]


  1. Glucose-6-phosphatase structure, regulation, and function: an update. Foster, J.D., Pederson, B.A., Nordlie, R.C. Proc. Soc. Exp. Biol. Med. (1997) [Pubmed]
WikiGenes - Universities