Src and Ras are involved in separate pathways in epithelial cell scattering.
We have demonstrated previously that Src controls the epidermal growth factor (EGF)-induced dispersion of NBT-II carcinoma epithelial cells. Here we show that while only Src and Yes were expressed and activated by EGF, microinjected kinase-inactive mutants of Src (SrcK-) and Fyn (FynK-) were able to exert a dominant-negative effect on the scattering response. Both SH2 and SH3 domains of FynK- were required for inhibition of cell scattering. Expression of dominant-negative N17Ras also abrogated EGF-induced dispersion, showing that Ras is another regulator of cell dispersion. Expression of SrcK- did not alter EGF-evoked Shc tyrosine phosphorylation, Shc-Grb2 complex formation and MAPK activation, three elements of the Ras pathway. Furthermore, the expression of Jun-Fos and Slug rescued the block induced by N17Ras but not by SrcK-, showing that Src kinases and Ras operate in separate pathways. In addition, actinomycin D inhibition of RNA synthesis repressed the ability of the activated mutant L61Ras but not that of F527Src to induce epithelial cell scattering. Since tyrosine phosphorylation of cytoskeleton-associated proteins pp125FAK and cortactin were abolished in EGF-stimulated SrcK- cells, we concluded that, in contrast to Ras, Src kinases may control epithelial cell dispersion in the absence of gene expression and by directly regulating the organization of the cortical cytoskeleton.[1]References
- Src and Ras are involved in separate pathways in epithelial cell scattering. Boyer, B., Roche, S., Denoyelle, M., Thiery, J.P. EMBO J. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg