The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Implication of a cis-acting element in the cytoplasmic accumulation of unspliced Borna disease virus RNAs.

Borna disease virus (BDV), the prototype of a new family within the order Mononegavirales, is unusual in its nuclear localization for replication and transcription and use of RNA splicing for gene expression. The BDV antigenome contains three transcription units and six major open reading frames. Multicistronic RNAs containing two introns are elaborated from the third transcription unit. Differential splicing of the two introns and cytoplasmic accumulation of the unspliced and partially spliced RNA are critical for the balanced expression of the putative matrix protein, glycoprotein, and polymerase. To investigate the mechanisms for cytoplasmic expression of unspliced and partially spliced BDV transcripts, the levels of these transcripts were measured in the cytoplasm of infected COS-7 cells and noninfected COS-7 cells transfected with plasmids containing 2.8-kb cDNA inserts representing either wild-type or mutant BDV RNA from the third transcription unit. Analysis of truncation mutations allowed the identification of a cis-acting element present within the 3' end of the BDV 2.8-kb transcript that facilitated the cytoplasmic accumulation of unspliced BDV transcripts through nucleocytoplasmic transport. The nucleocytoplasmic transport activity was not dependent on the presence of BDV proteins. Gel-shift assays revealed that the cis-acting element binds specifically to host cytoplasmic and nuclear proteins.[1]

References

 
WikiGenes - Universities