Modulation by APGW-amide, an Achatina endogenous inhibitory tetrapeptide, of currents induced by neuroactive compounds on Achatina neurons: amines and amino acids.
1. Modulatory effects of APGW-amide (Ala-Pro-Gly-Trp-NH2), proposed as an inhibitory neurotransmitter of Achatina neurons, perfused at 3 x 10(-6) M on the currents induced by small-molecule putative neurotransmitters were examined by using Achatina giant neuron types, v-RCDN (ventral-right cerebral distinct neuron), TAN (tonically autoactive neuron) and RAPN (right anterior pallial nerve neuron), under voltage clamp. These putative neurotransmitters were ejected locally to the neuron by brief pneumatic pressure. 2. Outward current (Iout) induced by erythro-beta-hydroxy-L-glutamic acid (erythro-L-BHGA) on v-RCDN, which was probably K+ dependent, was enhanced with membrane conductance (g) increase under APGW-amide. From dose (pressure duration)-response curves of erythro-L-BHGA measured in physiological solution (control curve) and with APGW-amide (drug curve), ED50 values of the two curves were nearly comparable, whereas Emax of the drug curve was significantly larger than that of the other. From a Lineweaver-Burk plot of these data, the cross point of the control line and the drug line was on the abscissa. 3. K(+)-dependent Iout caused by dopamine (DA) on v-RCDN was inhibited with a g increase by APGW-amide. The inhibition of this current caused by APGW-amide was mainly in a noncompetitive and partly uncompetitive manner. 4. 5-Hydroxytryptamine (5-HT) produced an inward current (Iin) with two (fast and slow) components on TAN, which was probably Na+ dependent. The fast component of the Iin was inhibited by APGW-amide. The inhibition was mainly in a noncompetitive manner. 5. The currents induced by acetylcholine, gamma-aminobutyric acid and L-glutamic acid on Achatina neuron types were not affected by APGW-amide. 6. The inhibitory effects of APGW-amide on the Iin (fast component) induced by 5-HT were nearly equipotent or a bit stronger than those on the Iout caused by DA. 7. The g increase produced by APGW-amide would be a cause for inhibiting the Iout induced by DA. In addition, we consider that APGW-amide affects intracellular signal transduction systems or ionic channels, thus modulating these currents.[1]References
- Modulation by APGW-amide, an Achatina endogenous inhibitory tetrapeptide, of currents induced by neuroactive compounds on Achatina neurons: amines and amino acids. Han, X.Y., Salunga, T.L., Zhang, W., Takeuchi, H., Matsunami, K. Gen. Pharmacol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg