The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sex differences and androgen-dependent regulation of aromatase (CYP19) mRNA expression in the developing and adult rat brain.

Sex differences, androgen dependence and asymmetries of aromatase activity have been reported during ontogeny of the rat. It remains to be elucidated, however, whether the changes in aromatase activity are reflected by similar changes in specific mRNA levels. In addition, very little is known regarding mechanism(s) underlying such differential regulation of aromatase expression. To address these questions, we have employed the in situ hybridization (ISH) technique to examine specific mRNA levels in the brain of both male and female rats at selected stages of development. In prenatal stages of development, at gestational day (GD) 18 and 20, aromatase mRNA was detected in several hypothalamic and limbic brain regions. Semiquantitative analysis of aromatase mRNA did not reveal statistically significant sex differences in any of these regions (except in one experiment at GD20, when a sex difference was found in the medial preoptic nucleus). In contrast, clear sex differences were determined at postnatal day (PN) 2; male animals contained significantly more aromatase mRNA in the bed nucleus of the stria terminalis (BST) and the sexually dimorphic nucleus of the preoptic area (SDN) compared to female rats. Four days later in development, at PN6, sex differences of aromatase mRNA signals were observed in the BST, but were no longer detectable in the SDN. At PN15 and in adult animals, no sex differences could be determined. The effect of flutamide treatment (50 mg/kg/day) was investigated in GD20 fetuses as well as in adult rats. No statistically significant changes in aromatase mRNA expression were found in either case. In summary, our results suggest that differential regulation of aromatase mRNA expression during the critical period of sexual differentiation might, in part, account for the establishment of some of the many sexually dimorphic parameters of the rat brain. The role of androgens in the regulation of the sex-specific and developmental expression of aromatase mRNA in the rat brain remains to be clarified.[1]

References

  1. Sex differences and androgen-dependent regulation of aromatase (CYP19) mRNA expression in the developing and adult rat brain. Lauber, M.E., Sarasin, A., Lichtensteiger, W. J. Steroid Biochem. Mol. Biol. (1997) [Pubmed]
 
WikiGenes - Universities