The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Preoptic Area

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Preoptic Area

 

Psychiatry related information on Preoptic Area

 

High impact information on Preoptic Area

 

Chemical compound and disease context of Preoptic Area

 

Biological context of Preoptic Area

 

Anatomical context of Preoptic Area

  • Analysis of AR-positive neurons reveals both known dimorphisms in the preoptic area of the hypothalamus and the bed nucleus of the stria terminalis as well as novel dimorphic islands in the basal forebrain with a clarity unencumbered by the vast population of AR-negative neurons [26].
  • Progesterone-sensitive males showed significantly higher relative abundance of androgen receptor-mRNA in the preoptic area, amygdala, and lateral septum, as compared with progesterone-insensitive animals receiving the same treatment [24].
  • Preliminary evidence indicates that the sites of action of PGD2 and E2 are located in the sleep and wake centers in or near the preoptic area and posterior hypothalamus, respectively [27].
  • Subsequent treatment with 500 micrograms of progesterone 1 hr before perfusion increased the intensity of the immunostaining within the medial preoptic area and the dorsal medial hypothalamus, although it had no significant effect on Fos-IR cell number [28].
  • The transcription factor Vax1, an intracellular mediator of both Shh and Fgf signaling, is expressed at high levels in the medial and lateral ganglionic eminences (MGE and LGE, respectively), in the septal area (SA), in the anterior entopeduncular area (AEP) and in the preoptic area (POA) [29].
 

Associations of Preoptic Area with chemical compounds

  • Neurons that do not contain ACh, including GABA-containing neurons in the basal forebrain and preoptic area, are active in a reciprocal manner to the neurons of the arousal systems: one group discharges with slow cortical activity during SWS, and another discharges with behavioral quiescence and loss of postural muscle tone during SWS and PS [30].
  • Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge [31].
  • Androgen- and estrogen-binding macromolecules from the hypothalamus plus preoptic area of 3- to 4-week-old mice have been detected and partially characterized [32].
  • Furthermore, cell bodies in the preoptic area contained both leukotriene C4- and LHRH-like immunoreactivities, suggesting localization of these two compounds in the same neurons [33].
  • Electrophysiological experiments on preoptic area/anterior hypothalamic neurons show that C2-ceramide, but not dihydroceramide, mimics the rapid hyperpolarizing effects of IL-1beta on the activity of warm-sensitive hypothalamic neurons [34].
 

Gene context of Preoptic Area

 

Analytical, diagnostic and therapeutic context of Preoptic Area

References

  1. Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: Relevance to thermoregulation during anesthesia. Kushikata, T., Hirota, K., Kotani, N., Yoshida, H., Kudo, M., Matsuki, A. Neuroscience (2005) [Pubmed]
  2. Prostaglandin E2 in the medial preoptic area produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla. Heinricher, M.M., Neubert, M.J., Martenson, M.E., Gonçalves, L. Neuroscience (2004) [Pubmed]
  3. Excitatory amino acid modulation of lordosis in the rat. McCarthy, M.M., Curran, G.H., Feder, H.H. Neurosci. Lett. (1991) [Pubmed]
  4. Effects of tumor-induced hyperprolactinemia on LH secretion following stimulation of the medial preoptic area, pituitary responsiveness and the estrogen-induced LH surge. Shu, C., Selmanoff, M. Neuroendocrinology (1991) [Pubmed]
  5. Antibodies to macrophage inflammatory protein-1beta in preoptic area of rats fail to suppress PGE2 hyperthermia. Armengol, J.A., Benamar, K., Fernández-Alonso, A., Sancibrián, M., Myers, R.D., Miñano, F.J. Brain Res. (1997) [Pubmed]
  6. Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Bridges, R.S., Numan, M., Ronsheim, P.M., Mann, P.E., Lupini, C.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  7. Comparative effectiveness of preoptic and tuberal stimulation for luteinizing hormone release and ovulation in two strains of rats. Everett, J.W., Quinn, D.L., Tyrey, L. Endocrinology (1976) [Pubmed]
  8. The nitric oxide-guanosine 3',5'-cyclic monophosphate pathway regulates dopamine efflux in the medial preoptic area and copulation in male rats. Sato, S.M., Hull, E.M. Neuroscience (2006) [Pubmed]
  9. Evidence that nitric oxide modulates drinking behaviour. Calapai, G., Squadrito, F., Altavilla, D., Zingarelli, B., Campo, G.M., Cilia, M., Caputi, A.P. Neuropharmacology (1992) [Pubmed]
  10. Cholecystokinin: critical role in mediating olfactory influences on reproduction. Li, C.S., Kaba, H., Saito, H., Seto, K. Neuroscience (1992) [Pubmed]
  11. Vasopressin injected into the hypothalamus triggers a stereotypic behavior in golden hamsters. Ferris, C.F., Albers, H.E., Wesolowski, S.M., Goldman, B.D., Luman, S.E. Science (1984) [Pubmed]
  12. Brain 5beta-reductase: a correlate of behavioral sensitivity to androgen. Hutchison, J.B., Steimer, T. Science (1981) [Pubmed]
  13. Prolactin-like immunoreactivity: localization in nerve terminals of rat hypothalamus. Fuxe, K., Hökfelt, T., Eneroth, P., Gustafsson, J.A., Skett, P. Science (1977) [Pubmed]
  14. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Herman, J.P., Cullinan, W.E. Trends Neurosci. (1997) [Pubmed]
  15. Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Ball, G.F., Riters, L.V., Balthazart, J. Frontiers in neuroendocrinology. (2002) [Pubmed]
  16. Effects of morphiceptin in the medial preoptic area on male sexual behavior. Matuszewich, L., Ormsby, J.L., Moses, J., Lorrain, D.S., Hull, E.M. Psychopharmacology (Berl.) (1995) [Pubmed]
  17. Muscarinic receptors in the preoptic area are sensitive to 17 beta-estradiol during the critical period. Egozi, Y., Kloog, Y. Neuroendocrinology (1985) [Pubmed]
  18. Regulation of lordosis behaviour in the female rat by corticotropin-releasing factor, beta-endorphin/corticotropin and luteinizing hormone-releasing hormone neuronal systems in the medial preoptic area. Sirinathsinghji, D.J. Brain Res. (1986) [Pubmed]
  19. Testosterone implanted in the preoptic area of male Japanese quail must be aromatized to activate copulation. Watson, J.T., Adkins-Regan, E. Hormones and behavior. (1989) [Pubmed]
  20. Sexual receptivity is reduced in the female mu-opioid receptor knockout mouse. Sinchak, K., Shahedi, K., Dewing, P., Micevych, P. Neuroreport (2005) [Pubmed]
  21. Estradiol differentially regulates lipocalin-type prostaglandin D synthase transcript levels in the rodent brain: Evidence from high-density oligonucleotide arrays and in situ hybridization. Mong, J.A., Devidze, N., Frail, D.E., O'Connor, L.T., Samuel, M., Choleris, E., Ogawa, S., Pfaff, D.W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Scammell, T., Gerashchenko, D., Urade, Y., Onoe, H., Saper, C., Hayaishi, O. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Heterotrimeric G proteins of the Gq/11 family are crucial for the induction of maternal behavior in mice. Wettschureck, N., Moers, A., Hamalainen, T., Lemberger, T., Schütz, G., Offermanns, S. Mol. Cell. Biol. (2004) [Pubmed]
  24. Intrahypothalamic implantation of progesterone in castrated male whiptail lizards (Cnemidophorus inornatus) elicits courtship and copulatory behavior and affects androgen receptor- and progesterone receptor-mRNA expression in the brain. Crews, D., Godwin, J., Hartman, V., Grammer, M., Prediger, E.A., Sheppherd, R. J. Neurosci. (1996) [Pubmed]
  25. Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. Scammell, T.E., Elmquist, J.K., Griffin, J.D., Saper, C.B. J. Neurosci. (1996) [Pubmed]
  26. Visualizing sexual dimorphism in the brain. Shah, N.M., Pisapia, D.J., Maniatis, S., Mendelsohn, M.M., Nemes, A., Axel, R. Neuron (2004) [Pubmed]
  27. Molecular mechanisms of sleep-wake regulation: roles of prostaglandins D2 and E2. Hayaishi, O. FASEB J. (1991) [Pubmed]
  28. Progesterone enhances an estradiol-induced increase in Fos immunoreactivity in localized regions of female rat forebrain. Auger, A.P., Blaustein, J.D. J. Neurosci. (1995) [Pubmed]
  29. Compromised generation of GABAergic interneurons in the brains of Vax1-/- mice. Taglialatela, P., Soria, J.M., Caironi, V., Moiana, A., Bertuzzi, S. Development (2004) [Pubmed]
  30. From waking to sleeping: neuronal and chemical substrates. Jones, B.E. Trends Pharmacol. Sci. (2005) [Pubmed]
  31. Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Orikasa, C., Kondo, Y., Hayashi, S., McEwen, B.S., Sakuma, Y. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  32. Androgen- and estrogen-binding macromolecules in developing mouse brain: biochemical and genetic evidence. Fox, T.O. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  33. Leukotriene C4 as a mediator of luteinizing hormone release from rat anterior pituitary cells. Hulting, A.L., Lindgren, J.A., Hökfelt, T., Eneroth, P., Werner, S., Patrono, C., Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  34. Ceramide mediates the rapid phase of febrile response to IL-1beta. Sanchez-Alavez, M., Tabarean, I.V., Behrens, M.M., Bartfai, T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  35. Cooperative actions of Tra2alpha with 9G8 and SRp30c in the RNA splicing of the gonadotropin-releasing hormone gene transcript. Park, E., Han, J., Son, G.H., Lee, M.S., Chung, S., Park, S.H., Park, K., Lee, K.H., Choi, S., Seong, J.Y., Kim, K. J. Biol. Chem. (2006) [Pubmed]
  36. Estrogen action in the estrogen receptor alpha-knockout mouse: is this due to ER-beta? Shughrue, P.J. Mol. Psychiatry (1998) [Pubmed]
  37. Cloning of two hypothalamic cDNAs encoding tissue-specific transcripts in the preoptic area and testis. Nowak, F.V. Mol. Endocrinol. (1990) [Pubmed]
  38. Galanin-like peptide as a link in the integration of metabolism and reproduction. Gottsch, M.L., Clifton, D.K., Steiner, R.A. Trends Endocrinol. Metab. (2004) [Pubmed]
  39. Hypothalamic interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats. Watanobe, H., Hayakawa, Y. Endocrinology (2003) [Pubmed]
  40. Variations in number of dopamine neurons and tyrosine hydroxylase activity in hypothalamus of two mouse strains. Baker, H., Joh, T.H., Ruggiero, D.A., Reis, D.J. J. Neurosci. (1983) [Pubmed]
  41. Thyrotropin-releasing hormone hyperactivity in the preoptic area of spontaneously hypertensive rats. Garcia, S.I., Dabsys, S.M., Martinez, V.N., Delorenzi, A., Santajuliana, D., Nahmod, V.E., Finkielman, S., Pirola, C.J. Hypertension (1995) [Pubmed]
  42. Inhibition of hypertension and salt intake by oral taurine treatment in hypertensive rats. Abe, M., Shibata, K., Matsuda, T., Furukawa, T. Hypertension (1987) [Pubmed]
  43. Characterization of tritiated noradrenaline release from the rat preoptic area with microdialysis in vivo. Fernández-Galaz, C., Herbison, A.E., Dyer, R.G. J. Neurochem. (1993) [Pubmed]
  44. Enhancement of immunoreactive somatostatin release into hypophysial portal blood by electrical stimulation of the preoptic area in the rat. Chihara, K., Arimura, A., Kubli-Garfias, C., Schally, A.V. Endocrinology (1979) [Pubmed]
 
WikiGenes - Universities