The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells.

In situ hybridization studies, promoter analyses and antisense RNA experiments have implicated transcription factor GATA-4 in the regulation of cardiomyocyte differentiation. In this study, we utilized Gata4-/- embryonic stem (ES) cells to determine whether this transcription factor is essential for cardiomyocyte lineage commitment. First, we assessed the ability of Gata4-/- ES cells form cardiomyocytes during in vitro differentiation of embryoid bodies. Contracting cardiomyocytes were seen in both wild-type and Gata4-/- embryoid bodies, although cardiomyocytes were observed more often in wild type than in mutant embryoid bodies. Electron microscopy of cardiomyocytes in the Gata4-/- embryoid bodies revealed the presence of sarcomeres and junctional complexes, while immunofluorescence confirmed the presence of cardiac myosin. To assess the capacity of Gata4-/- ES cells to differentiate into cardiomyocytes in vivo, we prepared and analyzed chimeric mice. Gata4-/- ES cells were injected into 8-cell-stage embryos derived from ROSA26 mice, a transgenic line that expresses beta-galactosidase in all cell types. Chimeric embryos were stained with X-gal to discriminate ES cell- and host-derived tissue. Gata4-/- ES cells contributed to endocardium, myocardium and epicardium. In situ hybridization showed that myocardium derived from Gata4-/- ES cells expressed several cardiac-specific transcripts, including cardiac alpha-myosin heavy chain, troponin C, myosin light chain-2v, Nkx-2.5/Csx, dHAND, eHAND and GATA-6. Taken together these results indicate that GATA-4 is not essential for terminal differentiation of cardiomyocytes and suggest that additional GATA-binding proteins known to be in cardiac tissue, such as GATA-5 or GATA-6, may compensate for a lack of GATA-4.[1]

References

  1. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Narita, N., Bielinska, M., Wilson, D.B. Development (1997) [Pubmed]
 
WikiGenes - Universities