The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2.

The third human tissue kallikrein to be identified, hK2, could be an alternate or complementary marker to kallikrein hK3 (prostate-specific antigen) for prostate diseases. Most of the hK2 in seminal plasma forms an inactive complex with protein C inhibitor (PCI), a serpin secreted by seminal vesicles. As serpin inhibitors behave as suicide substrates that are cleaved early in the interaction with their target enzyme, and kallikreins have different sensitivities to serpin inhibitors, we prepared a series of substrates with intramolecularly quenched fluorescence based on the sequences of the serpin reactive loops. They were used to compare the substrate specificities of hK1 and hK2, which both have trypsin-like specificity, and thus differ from chymotrypsin-like hK3. The serpin-derived peptides behaved as kallikrein substrates whose sensitivities reflected the specificity of the parent inhibitory proteins. Substrates derived from PCI were the most sensitive for both hK1 and hK2 with specificity constants of about 10(7) M-1. s-1. Those derived from antithrombin III and alpha2-antiplasmin were more specific for hK2 while a kallistatin-derived substrate was specifically cleaved by hK1. hK1 and hK2 substrates of greater specificity were obtained using chimeric peptides based on the sequence of serpin reactive loops. The main difference between specificities of hK1 and hK2 arise because hK2 can accommodate positively charged as well as small residues at P2 and requires an arginyl residue at P1. Thus, unlike hK1, hK2 does not cleave kininogen-derived substrates overlapping the region of N-terminal insertion of bradykinin in human kininogens.[1]

References

  1. Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2. Bourgeois, L., Brillard-Bourdet, M., Deperthes, D., Juliano, M.A., Juliano, L., Tremblay, R.R., Dubé, J.Y., Gauthier, F. J. Biol. Chem. (1997) [Pubmed]
 
WikiGenes - Universities