The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Analysis of c-kit receptor dimerization by fluorescence resonance energy transfer.

Stem cell factor (SCF) binding to the c-kit receptor triggers homodimerization and intermolecular tyrosine phosphorylation of the c-kit receptor, thus initiating signal transduction. Receptor dimerization is a critical early step in this process. Prior biochemical studies of c-kit receptor dimerization have mainly used affinity cross-linking techniques, which are beset with problems including low efficiency of cross-linking and the usual requirement for radiolabeled SCF to detect the cross-linked complex. We used the fluorescence resonance energy transfer (FRET) technique to examine the effects of SCF and other hematopoietic cytokines on c-kit receptor dimerization. The nonneutralizing anti-c-kit receptor monoclonal antibody 104D2 was directly conjugated to fluorescein isothiocyanate (FITC) or to the carbocyanine dye Cy3 and used to label cytokine-responsive human hematopoietic cell lines. The ability of SCF to induce c-kit receptor dimerization was assessed by flow cytometric analysis of FRET between the donor fluorochrome FITC and the acceptor fluorochrome Cy3. SCF induced a dose-dependent increase in c-kit receptor dimerization that correlated well with the concentrations of SCF required to stimulate cell proliferation. Receptor dimerization was detectable within 3 minutes after the addition of SCF and was maximal 30 minutes after the addition of SCF. Confocal microscopy showed redistribution of the c-kit receptor (from a diffuse distribution on the cell surface to "caps" at one end of the cell) within 3 minutes after SCF addition, followed by receptor internalization. Reappearance of the c-kit receptor on the cell surface required new protein synthesis, suggesting that the c-kit receptor is not recycled to the cell surface after internalization. Finally, erythropoietin (Epo), but not the structurally and functionally related cytokine thrombopoietin (Tpo), stimulated c-kit receptor dimerization detectable by FRET, and tyrosine phosphorylation of the c-kit receptor. These results suggest that exposure to Epo can activate the c-kit receptor and provide further evidence for cross-talk between the Epo and c-kit receptors in human hematopoietic cell lines. Studies with progeny of burst-forming unit-erythroid (BFU-E) suggest that the FRET technique is sufficiently sensitive to detect c-kit receptor dimerization on normal human hematopoietic cells.[1]

References

  1. Analysis of c-kit receptor dimerization by fluorescence resonance energy transfer. Broudy, V.C., Lin, N.L., Bühring, H.J., Komatsu, N., Kavanagh, T.J. Blood (1998) [Pubmed]
 
WikiGenes - Universities