Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus.
Three genes (fmdCAB) encoding an outer-membrane porin for short-chain amides and urea, formamidase, and a putative regulatory protein in Methylophilus methylotrophus have previously been cloned and characterised. Three genes have now been identified downstream of fmdB, viz fmdD encoding a hydrophilic protein containing an N-terminal signal sequence, and fmdEF encoding hydrophobic transmembrane proteins. The derived amino acid sequence of mature FmdD (predicted molecular mass 41,870 Da) was similar to the cytoplasmic, amide-binding protein (AmiC) from Pseudomonas aeruginosa and to several periplasmic, solute-binding proteins from other bacteria. Mature FmdD was purified and shown to be a monomer (40-45 kDa) with the predicted N-terminal amino acid sequence (ADYPTA-). Equilibrium dialysis showed that the purified protein bound short-chain amides and urea with high affinity (Kd 7.2 microM for [14C]urea). SDS/PAGE and western blotting using antiserum to mature FmdD showed it was induced by short-chain amides and urea, and repressed by excess ammonia. The derived amino acid sequences of FmdE (32,822 Da) and FmdF (incomplete; >25,435 Da) were similar to the transmembrane proteins BraD/LivH and BraE/LivM, respectively, in various leucine/isoleucine/valine transport systems. Uptake of [14C]urea by washed cells was inhibited by the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone and unlabelled formamide. It is concluded that FmdDEF comprise part of a high-affinity, binding-protein-dependent active-transport system for short-chain amides and urea in M. methylotrophus.[1]References
- Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. Mills, J., Wyborn, N.R., Greenwood, J.A., Williams, S.G., Jones, C.W. Eur. J. Biochem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg