The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

VDAC1  -  voltage-dependent anion channel 1

Homo sapiens

Synonyms: MGC111064, Outer mitochondrial membrane protein porin 1, PORIN, Plasmalemmal porin, Porin 31HL, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of VDAC1

 

High impact information on VDAC1

  • A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel [6].
  • Both porin classes interact with purine nucleoside triphosphates, which down-regulate pore size and cause a shift in voltage dependence and ion selectivity [7].
  • Only recombinant C4bp mutant molecules containing the NH2-terminal alpha-chain short consensus repeat (SCR1) bound to both Por1A and Por1B gonococci, suggesting that SCR1 contained Por binding sites [8].
  • The neisserial porin P.I is a GTP binding protein that forms a voltage-gated channel that translocates into mammalian cell membranes and modulates host cell signaling events [9].
  • Consistent with this, when nitrocellulose blots of whole L. pneumophila or bacterial components are incubated in fresh nonimmune serum, C3 fixes exclusively to the major outer membrane protein (MOMP) of L. pneumophila, a porin; C3 does not fix to L. pneumophila LPS on these blots [10].
 

Chemical compound and disease context of VDAC1

 

Biological context of VDAC1

 

Anatomical context of VDAC1

 

Associations of VDAC1 with chemical compounds

  • However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer [18].
  • Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate [18].
  • The biological meaning of our results may be derangement of voltage-dependent anion-selective channel function and reflecting impaired glucose, energy, and intermediary metabolism as well as apoptotic mechanisms [1].
  • Dopamine indeed decreased the mitochondrial Delta(Psi)(m), but the maximum effect was observed within 3 h, prior to the decrease in VDAC mRNA or protein levels [23].
  • Whether the decrease in VDAC expression influence the mitochondrial membrane potential (Delta(Psi)(m)) was determined with the dye Rhodamine-123 [23].
 

Physical interactions of VDAC1

  • Hexokinase II binding to VDAC suppresses the release of intermembrane space proteins and inhibits apoptosis, thereby contributing to the survival advantage of tumor cells [24].
  • Hexokinase and glycerol kinase interact with porin on the outer surface of the OMM in a manner which provides these enzymes with preferred access to the ATP generated in the mitochondrion [25].
  • In the process of permeability transition induction, the death-inducing domain of HGTD-P physically interacted with the voltage-dependent anion channel [26].
  • In vitro binding studies with glutathione S-transferase-porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity [27].
  • The structure of a peptide antigen corresponding to the subtype P1.7 variant of the porin PorA from the human pathogen Neisseria meningitidis was determined by solution of the X-ray crystal structure of the ternary complex of the peptide (ANGGASGQVK) in complex with a Fab fragment and a domain from streptococcal protein G to 1.95 A resolution [28].
 

Enzymatic interactions of VDAC1

 

Regulatory relationships of VDAC1

 

Other interactions of VDAC1

 

Analytical, diagnostic and therapeutic context of VDAC1

References

  1. Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer's disease and Down syndrome. Yoo, B.C., Fountoulakis, M., Cairns, N., Lubec, G. Electrophoresis (2001) [Pubmed]
  2. Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. Müller, A., Günther, D., Brinkmann, V., Hurwitz, R., Meyer, T.F., Rudel, T. EMBO J. (2000) [Pubmed]
  3. In vitro interactions between the two mitochondrial membrane proteins VDAC and cytochrome c oxidase. Roman, I., Figys, J., Steurs, G., Zizi, M. Biochemistry (2005) [Pubmed]
  4. Mapping of the human Voltage-Dependent Anion Channel isoforms 1 and 2 reconsidered. Messina, A., Oliva, M., Rosato, C., Huizing, M., Ruitenbeek, W., van den Heuvel, L.P., Forte, M., Rocchi, M., De Pinto, V. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  5. Proteomic identification of new biomarkers and application in thyroid cytology. Torres-Cabala, C., Bibbo, M., Panizo-Santos, A., Barazi, H., Krutzsch, H., Roberts, D.D., Merino, M.J. Acta Cytol. (2006) [Pubmed]
  6. Anion transport in heart. Hume, J.R., Duan, D., Collier, M.L., Yamazaki, J., Horowitz, B. Physiol. Rev. (2000) [Pubmed]
  7. Modulation of Neisseria porin (PorB) by cytosolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis. Rudel, T., Schmid, A., Benz, R., Kolb, H.A., Lang, F., Meyer, T.F. Cell (1996) [Pubmed]
  8. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. Ram, S., Cullinane, M., Blom, A.M., Gulati, S., McQuillen, D.P., Monks, B.G., O'Connell, C., Boden, R., Elkins, C., Pangburn, M.K., Dahlbäck, B., Rice, P.A. J. Exp. Med. (2001) [Pubmed]
  9. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. van Putten, J.P., Duensing, T.D., Carlson, J. J. Exp. Med. (1998) [Pubmed]
  10. Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. Bellinger-Kawahara, C., Horwitz, M.A. J. Exp. Med. (1990) [Pubmed]
  11. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Lai, J.C., Tan, W., Benimetskaya, L., Miller, P., Colombini, M., Stein, C.A. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  12. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Yang, Z., Schumaker, L.M., Egorin, M.J., Zuhowski, E.G., Guo, Z., Cullen, K.J. Clin. Cancer Res. (2006) [Pubmed]
  13. Colocalization of BAX with BID and VDAC-1 in nimesulide-induced apoptosis of human colon adenocarcinoma COLO 205 cells. Godlewski, M.M., Gajkowska, B., Lamparska-Przybysz, M., Motyl, T. Anticancer Drugs (2002) [Pubmed]
  14. Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. Lemasters, J.J., Holmuhamedov, E. Biochim. Biophys. Acta (2006) [Pubmed]
  15. Biphasic binding kinetics between FepA and its ligands. Payne, M.A., Igo, J.D., Cao, Z., Foster, S.B., Newton, S.M., Klebba, P.E. J. Biol. Chem. (1997) [Pubmed]
  16. VDAC1 is a transplasma membrane NADH-ferricyanide reductase. Baker, M.A., Lane, D.J., Ly, J.D., De Pinto, V., Lawen, A. J. Biol. Chem. (2004) [Pubmed]
  17. Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms. Blachly-Dyson, E., Baldini, A., Litt, M., McCabe, E.R., Forte, M. Genomics (1994) [Pubmed]
  18. Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase. Baker, M.A., Ly, J.D., Lawen, A. Biofactors (2004) [Pubmed]
  19. The murine voltage-dependent anion channel gene family. Conserved structure and function. Sampson, M.J., Lovell, R.S., Craigen, W.J. J. Biol. Chem. (1997) [Pubmed]
  20. The voltage-dependent anion channel-1 modulates apoptotic cell death. Zaid, H., Abu-Hamad, S., Israelson, A., Nathan, I., Shoshan-Barmatz, V. Cell Death Differ. (2005) [Pubmed]
  21. Intracellular localization and isoform expression of the voltage-dependent anion channel (VDAC) in normal and dystrophic skeletal muscle. Massa, R., Marliera, L.N., Martorana, A., Cicconi, S., Pierucci, D., Giacomini, P., De Pinto, V., Castellani, L. J. Muscle Res. Cell. Motil. (2000) [Pubmed]
  22. VDAC2 (porin-2) expression pattern and localization in the bovine testis. Hinsch, K.D., Asmarinah, n.u.l.l., Hinsch, E., Konrad, L. Biochim. Biophys. Acta (2001) [Pubmed]
  23. Mitochondrial voltage-dependent anion channel is involved in dopamine-induced apoptosis. Premkumar, A., Simantov, R. J. Neurochem. (2002) [Pubmed]
  24. Hexokinase II: the integration of energy metabolism and control of apoptosis. Pastorino, J.G., Hoek, J.B. Current medicinal chemistry. (2003) [Pubmed]
  25. Porin interaction with hexokinase and glycerol kinase: metabolic microcompartmentation at the outer mitochondrial membrane. Adams, V., Griffin, L., Towbin, J., Gelb, B., Worley, K., McCabe, E.R. Biochem. Med. Metab. Biol. (1991) [Pubmed]
  26. Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Lee, M.J., Kim, J.Y., Suk, K., Park, J.H. Mol. Cell. Biol. (2004) [Pubmed]
  27. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel. Sun, J., Liao, J.K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  28. Crystal structure of an Fab fragment in complex with a meningococcal serosubtype antigen and a protein G domain. Derrick, J.P., Maiden, M.C., Feavers, I.M. J. Mol. Biol. (1999) [Pubmed]
  29. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Pastorino, J.G., Hoek, J.B., Shulga, N. Cancer Res. (2005) [Pubmed]
  30. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Azoulay-Zohar, H., Israelson, A., Abu-Hamad, S., Shoshan-Barmatz, V. Biochem. J. (2004) [Pubmed]
  31. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. Singleton, T.E., Massari, P., Wetzler, L.M. J. Immunol. (2005) [Pubmed]
  32. Increased susceptibility to apoptosis in CD45(+) myeloma cells accompanied by the increased expression of VDAC1. Liu, S., Ishikawa, H., Tsuyama, N., Li, F.J., Abroun, S., Otsuyama, K.I., Zheng, X., Ma, Z., Maki, Y., Iqbal, M.S., Obata, M., Kawano, M.M. Oncogene (2006) [Pubmed]
  33. BCS1L is expressed in critical regions for neural development during ontogenesis in mice. Kotarsky, H., Tabasum, I., Mannisto, S., Heikinheimo, M., Hansson, S., Fellman, V. Gene Expr. Patterns (2007) [Pubmed]
  34. Neisseria gonorrhoeae porin P1.B induces endosome exocytosis and a redistribution of Lamp1 to the plasma membrane. Ayala, P., Vasquez, B., Wetzler, L., So, M. Infect. Immun. (2002) [Pubmed]
  35. Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F.P., Hilschmann, N. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  36. New EMBO members' review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. Boya, P., Roques, B., Kroemer, G. EMBO J. (2001) [Pubmed]
  37. Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. Hinsch, K.D., De Pinto, V., Aires, V.A., Schneider, X., Messina, A., Hinsch, E. J. Biol. Chem. (2004) [Pubmed]
  38. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Massari, P., Ho, Y., Wetzler, L.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
 
WikiGenes - Universities