The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interactive mechanisms among pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide, and parathyroid hormone receptors in guinea pig cecal circular smooth muscle cells.

Vasoactive intestinal peptide (VIP) causes relaxation of smooth muscle cells via both VIP-specific receptor coupled to nitric oxide synthase and VIP-preferring receptor coupled to adenylate cyclase. Because the mechanism of interaction among VIP, pituitary adenylate cyclase-activating peptide (PACAP), and PTH is still unclear, the characteristics of the receptors for PACAP and PTH in circular muscle cells obtained from the guinea pig cecum were investigated. The effects of an inhibitor of cAMP-dependent protein kinase [cyclic adenosine 3',5'-monophosphorothioate (Rp-cAMPS)], guanylate cyclase inhibitors, antagonists of these peptides, and the selective receptor protection on the relaxing effect produced by PACAP, VIP, and PTH were examined. PACAP-induced relaxation was significantly inhibited by a VIP antagonist, a PTH antagonist, Rp-cAMPS, and an inhibitor of particulate guanylate cyclase. VIP-induced relaxation was significantly inhibited by a PACAP antagonist and a PTH antagonist. PTH-induced relaxation was significantly inhibited by a VIP-specific receptor antagonist and Rp-cAMPS, but not by a PACAP antagonist. A PTH antagonist significantly inhibited a VIP-preferring receptor agonist-induced relaxation. The muscle cells in which cholecystokinin octapeptide and PTH receptors were protected completely abolished the inhibitory responses to VIP and PACAP. The muscle cells in which cholecystokinin octapeptide and VIP or PACAP receptors were protected completely abolished the inhibitory response to PTH. This study shows that PACAP induces relaxation of these muscle cells via both VIP-preferring receptor coupled to adenylate cyclase and PACAP-specific receptor, and that PTH induces relaxation of the muscle cells via PTH-specific receptor coupled to adenylate cyclase. In addition, the results of a selective receptor protection show that PTH does not bind to VIP receptors, and that VIP does not bind to PTH receptor. Therefore, this study first demonstrates the presence of one-way inhibitory mechanisms from the PTH-specific receptor to the VIP-preferring receptor, and from the VIP-specific receptor to the PTH-specific receptor in the mechanisms of interaction between VIP and PTH.[1]

References

 
WikiGenes - Universities