The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cecum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cecum

 

High impact information on Cecum

  • These results show that Casp-1, which is both proapoptotic and proinflammatory, is essential for S. typhimurium to efficiently colonize the cecum and PP and subsequently cause systemic typhoid-like disease in mice [6].
  • In vitro under short-circuit conditions, cecum actively absorbed Na and Cl (JnetNa = 5.6 +/- 0.3, JnetCl = 1.5 +/- 0.3 mu eq.cm-2.h-1) with a short-circuit current (Isc) of 6.29 +/- 0.2 mu eq.cm-2.h-1.Cl substitution with sulfate decreased both JnetNa and Isc by 1.3 mu eq/cm2.h-1.HCO3 removal decreased both JnetNa and Isc 3.3 mu eq.cm-2.h-1 [7].
  • Thus, cecum exhibits a distinct type of electrogenic Na electrogenic Na absorption which is partially dependent on the presence of Cl and HCO3, not blocked by amiloride but by phenamil [7].
  • The cecum is exteriorized through a midline incision, and 1.5 X 10(5) MCA-38 liver-derived (LD) tumor cells in 0.1 ml was injected into the ileocolic vein (ICV) [8].
  • In the cecum, areas under the concentration curves decreased from day 1 to day 8 for lactulose, galactose, and fructose (P less than 0.01), while an increase was found for lactic acid (P less than 0.001), acetic acid (P less than 0.0001), and total VFA (P less than 0.001) [9].
 

Chemical compound and disease context of Cecum

 

Biological context of Cecum

  • Analysis of the phenotypes revealed that the soluble IGF2R affects the size of some organs (colon and cecum) exclusively by reducing the biological activity of IGF-II, whereas in other organs (stomach and skin) the biological activity of the receptor is at least in part independent of IGF-II and must involve an interaction with other factor(s) [15].
  • Gastric emptying of 99mTc and mouth to cecum transit time, as measured by the breath hydrogen technique, after a mixed meal containing lactulose and 99mTc-diethylenetriaminepentaacetate, were assessed once before, twice during, and once after the period of study medication [16].
  • In addition, choleragen increased cecal mucosal content of adenosine 3':5'-cyclic phosphate but did not alter the histology of the cecum [17].
  • Quantitative measurements of apoptosis, Bax and Bcl-xL protein expression in the ApcMin mice revealed the ratio of Bax/Bcl-xL expression and apoptosis increased in the small intestine but decreased in the cecum, consistent with the regional tumorigenesis observed after sulindac [18].
  • The aim of the study was to evaluate the influence of oligofructose on putrescine, spermidine and spermine concentrations in the cecum, the portal vein and the liver of rats and to assess their involvement in cecal enlargement and the modulation of hepatic lipid metabolism [19].
 

Anatomical context of Cecum

 

Associations of Cecum with chemical compounds

  • The fate of glucose in the colon of rats and man was investigated by measuring breath 14CO2 and fecal 14C after direct instillation of 14C-labeled glucose, acetate, and lactate into the cecum [20].
  • DSS produced water, sodium and chloride secretion into the in vivo rat cecum [25].
  • After direct instillation of SASP and lactulose into the cecum, the appearances of their metabolites (sulfapyridine in plasma and hydrogen in breath) were rapid (1-10 min) and simultaneous [22].
  • The mucosal concentration of acetaldehyde was significantly higher in the rectum compared with the cecum (198 +/- 23 vs. 120 +/- 23 nmoles.g colon-1, p less than 0.05), but was not affected by chronic ethanol feeding [26].
  • A similar increment of serum bilirubin levels was observed after injection of bilirubin into the cecum of Wistar rats [27].
 

Gene context of Cecum

  • Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud [28].
  • From E11.5 onwards, Fgf10 expression is found throughout the cecum mesenchyme [29].
  • IL-10-deficient mice with active colitis exhibited a four- to fivefold greater expression of MAdCAM-1 in the cecum and colon compared with their healthy controls or to IL-10 k/o mice with no evidence of colitis [30].
  • COX-1 mRNA was constitutively expressed in the intact cecum, and its expression level was not altered after the mechanical stimulus [31].
  • In conclusion, COX-2, but not COX-1, plays a significant role in mechanical stimulus-induced peritoneal formation in the mouse cecum [31].
 

Analytical, diagnostic and therapeutic context of Cecum

References

  1. Fedotozine reverses ileus induced by surgery or peritonitis: action at peripheral kappa-opioid receptors. Rivière, P.J., Pascaud, X., Chevalier, E., Le Gallou, B., Junien, J.L. Gastroenterology (1993) [Pubmed]
  2. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Adawi, D., Kasravi, F.B., Molin, G., Jeppsson, B. Hepatology (1997) [Pubmed]
  3. Gastrointestinal transit in cirrhotic patients: effect of hepatic encephalopathy and its treatment. Van Thiel, D.H., Fagiuoli, S., Wright, H.I., Chien, M.C., Gavaler, J.S. Hepatology (1994) [Pubmed]
  4. Angiogenesis and tumor proliferation/metastasis of human colorectal cancer cell line SW620 transfected with endocrine glands-derived-vascular endothelial growth factor, as a new angiogenic factor. Goi, T., Fujioka, M., Satoh, Y., Tabata, S., Koneri, K., Nagano, H., Hirono, Y., Katayama, K., Hirose, K., Yamaguchi, A. Cancer Res. (2004) [Pubmed]
  5. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Sellon, R.K., Tonkonogy, S., Schultz, M., Dieleman, L.A., Grenther, W., Balish, E., Rennick, D.M., Sartor, R.B. Infect. Immun. (1998) [Pubmed]
  6. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. Monack, D.M., Hersh, D., Ghori, N., Bouley, D., Zychlinsky, A., Falkow, S. J. Exp. Med. (2000) [Pubmed]
  7. Electrogenic sodium absorption in rabbit cecum in vitro. Sellin, J.H., Oyarzabal, H., Cragoe, E.J. J. Clin. Invest. (1988) [Pubmed]
  8. Description of a murine model of experimental hepatic metastases. Goldrosen, M.H., Paolini, N., Holyoke, E.D. J. Natl. Cancer Inst. (1986) [Pubmed]
  9. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). Florent, C., Flourie, B., Leblond, A., Rautureau, M., Bernier, J.J., Rambaud, J.C. J. Clin. Invest. (1985) [Pubmed]
  10. Regulation of the mouse organic solute transporter {alpha}-beta, Ost{alpha}-Ostbeta, by bile acids. Frankenberg, T., Rao, A., Chen, F., Haywood, J., Shneider, B.L., Dawson, P.A. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
  11. Histologic changes in the guinea pig gastrointestinal tract following 1 weeks' administration of chlorpromazine, haloperidol or atropine. Szanto, P., Ehrenpreis, E., Krakow, M., Rubinstein, O., Ehrenpreis, S. Psychopharmacology (Berl.) (1988) [Pubmed]
  12. Regional differences in attachment of enteroadherent Escherichia coli strain RDEC-1 to rabbit intestine: luminal colonization but lack of mucosal adherence in jejunal self-filling blind loops. Sherman, P.M., Boedeker, E.C. J. Pediatr. Gastroenterol. Nutr. (1987) [Pubmed]
  13. Better preservation of immune function after laparoscopic-assisted vs. open bowel resection in a murine model. Allendorf, J.D., Bessler, M., Whelan, R.L., Trokel, M., Laird, D.A., Terry, M.B., Treat, M.R. Dis. Colon Rectum (1996) [Pubmed]
  14. Carcinogenicity of chrysazin in large intestine and liver of mice. Mori, H., Sugie, S., Niwa, K., Yoshimi, N., Tanaka, T., Hirono, I. Jpn. J. Cancer Res. (1986) [Pubmed]
  15. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. Zaina, S., Squire, S. J. Biol. Chem. (1998) [Pubmed]
  16. Effect of a new oral somatostatin analog (SDZ CO 611) on gastric emptying, mouth to cecum transit time, and pancreatic and gut hormone release in normal male subjects. Nelson-Piercy, C., Hammond, P.J., Gwilliam, M.E., Khandan-Nia, N., Myers, M.J., Ghatei, M.A., Bloom, S.R. J. Clin. Endocrinol. Metab. (1994) [Pubmed]
  17. Effect of enterotoxins of Vibrio cholerae, Escherichia coli, and Shigella dysenteriae type 1 on fluid and electrolyte transport in the colon. Donowitz, M., Binder, H.J. J. Infect. Dis. (1976) [Pubmed]
  18. Regional response leading to tumorigenesis after sulindac in small and large intestine of mice with Apc mutations. Yang, K., Fan, K., Kurihara, N., Shinozaki, H., Rigas, B., Augenlicht, L., Kopelovich, L., Edelmann, W., Kucherlapati, R., Lipkin, M. Carcinogenesis (2003) [Pubmed]
  19. Dietary fructans modulate polyamine concentration in the cecum of rats. Delzenne, N.M., Kok, N., Deloyer, P., Dandrifosse, G. J. Nutr. (2000) [Pubmed]
  20. Fate of soluble carbohydrate in the colon of rats and man. Bond, J.H., Levitt, M.D. J. Clin. Invest. (1976) [Pubmed]
  21. Colonic metabolism of wheat starch in healthy humans. Effects on fecal outputs and clinical symptoms. Flourie, B., Florent, C., Jouany, J.P., Thivend, P., Etanchaud, F., Rambaud, J.C. Gastroenterology (1986) [Pubmed]
  22. Sulfapyridine appearance in plasma after salicylazosulfapyridine. Another simple measure of intestinal transit. Kellow, J.E., Borody, T.J., Phillips, S.F., Haddad, A.C., Brown, M.L. Gastroenterology (1986) [Pubmed]
  23. Ion transport in human cecum, transverse colon, and sigmoid colon in vitro. Baseline and response to electrical stimulation of intrinsic nerves. Hubel, K.A., Renquist, K., Shirazi, S. Gastroenterology (1987) [Pubmed]
  24. Two endothelin receptors (ETA and ETB) expressed on circular smooth muscle cells of guinea pig cecum. Okabe, H., Chijiiwa, Y., Nakamura, K., Yoshinaga, M., Akiho, H., Harada, N., Nawata, H. Gastroenterology (1995) [Pubmed]
  25. Effect of dioctyl sodium sulfosuccinate on colonic fluid and electrolyte movement. Donowitz, M., Binder, H.J. Gastroenterology (1975) [Pubmed]
  26. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Seitz, H.K., Simanowski, U.A., Garzon, F.T., Rideout, J.M., Peters, T.J., Koch, A., Berger, M.R., Einecke, H., Maiwald, M. Gastroenterology (1990) [Pubmed]
  27. Fasting-related hyperbilirubinemia in rats: the effect of decreased intestinal motility. Kotal, P., Vítek, L., Fevery, J. Gastroenterology (1996) [Pubmed]
  28. Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development. Zhang, X., Stappenbeck, T.S., White, A.C., Lavine, K.J., Gordon, J.I., Ornitz, D.M. Development (2006) [Pubmed]
  29. Requirement for fibroblast growth factor 10 or fibroblast growth factor receptor 2-IIIb signaling for cecal development in mouse. Burns, R.C., Fairbanks, T.J., Sala, F., De Langhe, S., Mailleux, A., Thiery, J.P., Dickson, C., Itoh, N., Warburton, D., Anderson, K.D., Bellusci, S. Dev. Biol. (2004) [Pubmed]
  30. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. Connor, E.M., Eppihimer, M.J., Morise, Z., Granger, D.N., Grisham, M.B. J. Leukoc. Biol. (1999) [Pubmed]
  31. Significance of cyclooxygenase-2 induced via p38 mitogen-activated protein kinase in mechanical stimulus-induced peritoneal adhesion in mice. Katada, J., Saito, H., Ohashi, A. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  32. Molecular characterization and functional regulation of a novel rat liver-specific organic anion transporter rlst-1. Kakyo, M., Unno, M., Tokui, T., Nakagomi, R., Nishio, T., Iwasashi, H., Nakai, D., Seki, M., Suzuki, M., Naitoh, T., Matsuno, S., Yawo, H., Abe, T. Gastroenterology (1999) [Pubmed]
  33. Effects of intestinal stasis on intercellular adhesion molecule 1 expression in the rat: role of enteric bacteria. Komatsu, S., Panés, J., Grisham, M.B., Russell, J.M., Mori, N., Granger, D.N. Gastroenterology (1997) [Pubmed]
  34. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Laughlin, R.S., Musch, M.W., Hollbrook, C.J., Rocha, F.M., Chang, E.B., Alverdy, J.C. Ann. Surg. (2000) [Pubmed]
  35. Attaching and effacing adherence of Vero cytotoxin-producing Escherichia coli to rabbit intestinal epithelium in vivo. Sherman, P., Soni, R., Karmali, M. Infect. Immun. (1988) [Pubmed]
 
WikiGenes - Universities