The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.

The universal sulfonate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is synthesized by the concerted action of ATP sulfurylase and adenosine 5'-phosphosulfate ( APS) kinase, which in animals are fused into a bifunctional protein. The cDNA for human PAPS synthase (hPAPSS) along with polymerase chain reaction products corresponding to several NH2- and COOH-terminal fragments were cloned and expressed in COS-1 cells. A 1-268-amino acid fragment expressed APS kinase activity, whereas a 220-623 fragment evinced ATP sulfurylase activity. The 1-268 fragment and full-length hPAPSS (1-623) exhibited hyperbolic responses against APS substrate with equivalent Km values (0.6 and 0.4 microM, respectively). The 1-268 fragment demonstrated Michaelis-Menten kinetics against ATP as substrate (Km 0.26 mM); however, full-length hPAPSS exhibited a sigmoidal response (apparent Km 1.5 mM) suggesting cooperative binding. Catalytic efficiency (Vmax/Km) of the 1-268 fragment was 64-fold higher than full-length hPAPSS for ATP. The kinetic data suggest that the COOH-terminal domain of hPAPSS exerts a regulatory role over APS kinase activity located in the NH2-terminal domain of this bifunctional protein. In addition, the 1-268 fragment and full-length hPAPSS were overexpressed in Escherichia coli and column purified. Purified full-length hPAPSS, in contrast to the COS-1 cell-expressed cDNA construct, exhibited a hyperbolic response curve against ATP suggesting that hPAPSS is perhaps modified in vivo.[1]


WikiGenes - Universities