The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli.

The structural gene pfTRM1 (GenBank accession no. AF051912), encoding tRNA(guanine-26, N 2- N 2) methyltransferase (EC of the strictly anaerobic hyperthermophilic archaeon Pyrococcus furiosus, has been identified by sequence similarity to the TRM1 gene of Saccharomyces cerevisiae (YDR120c). The pfTRM1 gene in a 3.0 kb restriction DNA fragment of P.furiosus genomic DNA has been cloned by library screening using a PCR probe to the 5'-part of the corresponding ORF. Sequence analysis revealed an entire ORF of 1143 bp encoding a polypeptide of 381 residues (calculated molecular mass 43.3 kDa). The deduced amino acid sequence of this newly identified gene shares significant similarity with the TRM1- like genes of three other archaea (Methanococcus jannaschii, Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus), one eukaryon (Caenorhabditis elegans) and one hyperthermophilic eubacterium (Aquifex aeolicus). Two short consensus motifs for S-adenosyl-l-methionine binding are detected in the sequence of pfTrm1p. Cloning of the P.furiosus TRM1 gene in an Escherichia coli expression vector allowed expression of the recombinant protein (pfTrm1p) with an apparent molecular mass of 42 kDa. A protein extract from the transformed E.coli cells shows enzymatic activity for the quantitative formation of N 2, N 2-dimethylguanosine at position 26 in a transcript of yeast tRNAPhe used as substrate. The recombinant enzyme was also shown to modify bulk E.coli tRNAs in vivo.[1]


WikiGenes - Universities