The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Archaeoglobus


High impact information on Archaeoglobus

  • Two crystal structures of a SIR2 homolog from Archaeoglobus fulgidus complexed with NAD have been determined at 2.1 A and 2.4 A resolutions [6].
  • Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core [7].
  • Recently, putative Sm proteins of unknown function have been identified in ARCHAEA: We show by immunoprecipitation experiments that the two Sm proteins present in Archaeoglobus fulgidus (AF-Sm1 and AF-Sm2) associate with RNase P RNA in vivo, suggesting a role in tRNA processing [8].
  • Here we report the 2.9 A resolution co-crystal structure of an archaeal homolog of Nop56p/Nop58p, Nop5p, in complex with fibrillarin from Archaeoglobus fulgidus (AF) and the methyl donor S-adenosyl-L-methionine [9].
  • The structures of APS reductase from the hyperthermophilic Archaeoglobus fulgidus in the two-electron reduced state and with sulfite bound to FAD are reported at 1.6- and 2.5- resolution, respectively [10].

Chemical compound and disease context of Archaeoglobus


Biological context of Archaeoglobus


Associations of Archaeoglobus with chemical compounds


Gene context of Archaeoglobus

  • Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle [23].
  • We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution [24].
  • Structural and functional analysis of the gpsA gene product of Archaeoglobus fulgidus: a glycerol-3-phosphate dehydrogenase with an unusual NADP+ preference [25].
  • Most randomly generated point mutations identified in the genetic screen mapped to a predicted extracellular domain in the N terminus of PrgY that is conserved in a newly identified family of related proteins from disparate species including Borrelia burgdorferi, Archaeoglobus fulgidus, Arabidopsis thaliana, and Homo sapiens [26].
  • Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5'-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition [27].

Analytical, diagnostic and therapeutic context of Archaeoglobus


  1. Methylpurine DNA glycosylase of the hyperthermophilic archaeon Archaeoglobus fulgidus. Birkeland, N.K., Anensen, H., Knaevelsrud, I., Kristoffersen, W., Bjørås, M., Robb, F.T., Klungland, A., Bjelland, S. Biochemistry (2002) [Pubmed]
  2. Purification, characterization, DNA sequence and cloning of a pimeloyl-CoA synthetase from Pseudomonas mendocina 35. Binieda, A., Fuhrmann, M., Lehner, B., Rey-Berthod, C., Frutiger-Hughes, S., Hughes, G., Shaw, N.M. Biochem. J. (1999) [Pubmed]
  3. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Karkhoff-Schweizer, R.R., Huber, D.P., Voordouw, G. Appl. Environ. Microbiol. (1995) [Pubmed]
  4. Dual coenzyme specificity of Archaeoglobus fulgidus HMG-CoA reductase. Kim, D.Y., Stauffacher, C.V., Rodwell, V.W. Protein Sci. (2000) [Pubmed]
  5. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes. Shintani, T., Uchiumi, T., Yonezawa, T., Salminen, A., Baykov, A.A., Lahti, R., Hachimori, A. FEBS Lett. (1998) [Pubmed]
  6. Crystal structure of a SIR2 homolog-NAD complex. Min, J., Landry, J., Sternglanz, R., Xu, R.M. Cell (2001) [Pubmed]
  7. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Fan, L., Arvai, A.S., Cooper, P.K., Iwai, S., Hanaoka, F., Tainer, J.A. Mol. Cell (2006) [Pubmed]
  8. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. Törö, I., Thore, S., Mayer, C., Basquin, J., Séraphin, B., Suck, D. EMBO J. (2001) [Pubmed]
  9. Structure and function of archaeal box C/D sRNP core proteins. Aittaleb, M., Rashid, R., Chen, Q., Palmer, J.R., Daniels, C.J., Li, H. Nat. Struct. Biol. (2003) [Pubmed]
  10. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Fritz, G., Roth, A., Schiffer, A., Büchert, T., Bourenkov, G., Bartunik, H.D., Huber, H., Stetter, K.O., Kroneck, P.M., Ermler, U. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Extrinsic factors potassium chloride and glycerol induce thermostability in recombinant anthranilate synthase from Archaeoglobus fulgidus. Byrnes, W.M., Vilker, V.L. Extremophiles (2004) [Pubmed]
  12. Repair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon. Chung, J.H., Suh, M.J., Park, Y.I., Tainer, J.A., Han, Y.S. Mutat. Res. (2001) [Pubmed]
  13. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Wang, C.W., Oh, M.K., Liao, J.C. Biotechnol. Bioeng. (1999) [Pubmed]
  14. The Shwachman-Bodian-Diamond syndrome protein family is involved in RNA metabolism. Savchenko, A., Krogan, N., Cort, J.R., Evdokimova, E., Lew, J.M., Yee, A.A., Sánchez-Pulido, L., Andrade, M.A., Bochkarev, A., Watson, J.D., Kennedy, M.A., Greenblatt, J., Hughes, T., Arrowsmith, C.H., Rommens, J.M., Edwards, A.M. J. Biol. Chem. (2005) [Pubmed]
  15. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin. Gallagher, D.T., Monbouquette, H.G., Schröder, I., Robinson, H., Holden, M.J., Smith, N.N. J. Mol. Biol. (2004) [Pubmed]
  16. Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Boucher, Y., Huber, H., L'Haridon, S., Stetter, K.O., Doolittle, W.F. Mol. Biol. Evol. (2001) [Pubmed]
  17. Flavin mononucleotide-binding flavoprotein family in the domain Archaea. Ding, Y.H., Ferry, J.G. J. Bacteriol. (2004) [Pubmed]
  18. Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization. Mukhopadhyay, B., Purwantini, E., Kreder, C.L., Wolfe, R.S. J. Bacteriol. (2001) [Pubmed]
  19. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus. Vadas, A., Monbouquette, H.G., Johnson, E., Schröder, I. J. Biol. Chem. (1999) [Pubmed]
  20. Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. Kirchner, U., Westphal, A.H., Müller, R., van Berkel, W.J. J. Biol. Chem. (2003) [Pubmed]
  21. Probing the mechanism of the Archaeoglobus fulgidus inositol-1-phosphate synthase. Neelon, K., Wang, Y., Stec, B., Roberts, M.F. J. Biol. Chem. (2005) [Pubmed]
  22. The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme. Payandeh, J., Fujihashi, M., Gillon, W., Pai, E.F. J. Biol. Chem. (2006) [Pubmed]
  23. Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Diener, J.L., Wilson, C. Biochemistry (2000) [Pubmed]
  24. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus. Stieglitz, K.A., Yang, H., Roberts, M.F., Stec, B. Biochemistry (2005) [Pubmed]
  25. Structural and functional analysis of the gpsA gene product of Archaeoglobus fulgidus: a glycerol-3-phosphate dehydrogenase with an unusual NADP+ preference. Sakasegawa, S., Hagemeier, C.H., Thauer, R.K., Essen, L.O., Shima, S. Protein Sci. (2004) [Pubmed]
  26. Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enterococcus faecalis. Chandler, J.R., Flynn, A.R., Bryan, E.M., Dunny, G.M. J. Bacteriol. (2005) [Pubmed]
  27. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Ma, J.B., Yuan, Y.R., Meister, G., Pei, Y., Tuschl, T., Patel, D.J. Nature (2005) [Pubmed]
  28. Biosensor for asparagine using a thermostable recombinant asparaginase from Archaeoglobus fulgidus. Li, J., Wang, J., Bachas, L.G. Anal. Chem. (2002) [Pubmed]
  29. Crystallization and phasing of alanine dehydrogenase from Archaeoglobus fulgidus. Smith, N., Mayhew, M., Robinson, H., Héroux, A., Charlton, D., Holden, M.J., Gallagher, D.T. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  30. Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments. Kunow, J., Linder, D., Thauer, R.K. Arch. Microbiol. (1995) [Pubmed]
WikiGenes - Universities