The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activated on the cell surface.

The cell-surface activation of pro-matrix metalloproteinase 2 (pro-MMP-2) is considered to be critical for cell migration and invasion. Treatment of human uterine cervical fibroblasts with concanavalin A activates pro-MMP-2 on the cell surface by converting it to the 65-kDa form with a minor form of 45 kDa. However, the 65-kDa MMP-2 was inactivated by tissue inhibitor of metalloproteinases (TIMP)-2 that was bound to the plasma membrane upon concanavalin A treatment. TIMP-2 binds to the plasma membrane through its N-terminal domain by two different modes of interaction as follows: one is sensitive to a hydroxamate (HXM) inhibitor of MMPs and the other is HXM-insensitive. TIMP-2 bound to the membrane in a HXM-insensitive manner, comprising about 40-50% of TIMP-2 on the membrane, is the inhibitor of the cell surface-activated MMP-2. It, however, does not inhibit MMP-3, MMP-9, and the 45-kDa MMP-2 lacking the C-terminal domain. The inhibition of the 65-kDa MMP-2 by TIMP-2 is initiated by the interaction of their C-terminal domains. Subsequently, the MMP-2.TIMP-2 complex is released from the membrane, and the activity of MMP-2 is blocked by TIMP-2. In the presence of collagen types I, II, III, V, or gelatin, the rate of inhibition of the 65-kDa MMP-2 by the membrane- bound TIMP-2 decreased considerably. These results suggest that the pericellular activity of MMP-2 is tightly regulated by membrane- bound TIMP-2 and surrounding extracellular matrix components.[1]

References

 
WikiGenes - Universities