The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MMP9  -  matrix metallopeptidase 9 (gelatinase B,...

Homo sapiens

Synonyms: 92 kDa gelatinase, 92 kDa type IV collagenase, CLG4B, GELB, Gelatinase B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MMP9

  • Here we report that expression of MMP9 is increased in Epstein-Barr virus (EBV)-infected type III latency lymphoma cell lines, but not in type I lines where latent viral gene expression is highly restricted [1].
  • We generated human breast cancer xenograft models using MCF-7 cells overexpressing secreted and membrane-anchored MMP9 [2].
  • MMP9 over-expression is implicated in the vascular re-modelling events preceding plaque rupture (the most common cause of acute myocardial infarction) [3].
  • Reduced MMP9 activity, either by genetic manipulation or through pharmacological intervention, has an impact on ventricular re-modelling following infarction [3].
  • Signals for MMP9 mRNA were found in two cases with endocarditis and five cases with degenerative valvular disease [4].
  • The present study has shown significant associations between the two nonsynonymous MMP-9 polymorphisms with lymph node metastasis in gastric cancer, especially with the diffuse type [5].

Psychiatry related information on MMP9


High impact information on MMP9

  • We demonstrated that metalloproteinases (MMPs), and most likely MMP-9, are required for intravasation by showing that marimastat, an inhibitor of MMPs, reduced intravasation by more than 90%, and that only tumor cell lines expressing MMP-9 intravasated [11].
  • Here we show that PPAR-gamma is markedly upregulated in activated macrophages and inhibits the expression of the inducible nitric oxide synthase, gelatinase B and scavenger receptor A genes in response to 15d-PGJ2 and synthetic PPAR-gamma ligands [12].
  • Matrilysin-deficient human macrophages fail to mediate an elastolytic response despite the continued expression of gelatinase B and metalloelastase [13].
  • In addition, TFPI-2 also reduced the activity of the gelatinases MMP-2 and MMP-9 [14].
  • CONCLUSIONS: Reduced EGFR expression in ovarian carcinoma cells decreased their adhesion to laminin-1, expression of the alpha(6)-integrin subunit (a well-characterized laminin-1 receptor), and MMP-9 activity [15].

Chemical compound and disease context of MMP9


Biological context of MMP9

  • Three motifs, homologous to the binding sites of NF-kappaB, SP-1, and AP-1 proteins, contribute to induction of the MMP9 promoter by 12-O-tetradecanoyl-phorbol-13-acetate and tumor necrosis factor alpha [1].
  • The enhancement of MMP9 expression was blocked by cotransfection of an IkappaB expression plasmid [1].
  • These data suggest that polymorphisms in the MMP1 and MMP12 genes, but not MMP9, are either causative factors in smoking-related lung injury or are in linkage disequilibrium with causative polymorphisms [20].
  • Stromal-derived factor-1 induced MMP9, which in turn regulated the bioavailability of vascular endothelial growth factor and the cascade of its tumor-favoring effects, whereas granulocyte colony-stimulating factor decreased MMP9 and the consequences of its action [21].
  • Prior microarray studies comparing global gene expression patterns in preadipocytes/stromal vascular cells isolated from nonobese nondiabetic versus obese nondiabetic Pima Indians showed that matrix metalloproteinase 9 (MMP9) is upregulated in obese subjects [22].

Anatomical context of MMP9


Associations of MMP9 with chemical compounds

  • Atorvastatin effectively suppressed IL-18-mediated AP-1 and NF-kappaB activation, MMP9 expression, and SMC migration [23].
  • Capillary number and vessel perimeter were specifically increased only in tumors overexpressing wild-type MMP9 (the secreted form); this increase was inhibited when tumors were induced in doxycycline-treated mice [2].
  • RESULTS: Hyperhomocysteinaemia increased the production and enzymatic activity of MMP2 and MMP9, the effect being more pronounced in high glucose [24].
  • The aim of this study was to assess the mediating role of PGs on lipopolysaccharide (LPS)-induced MMP9 secretion in vitro [27].
  • OBJECTIVE: Matrix metalloproteinases (MMP), especially the gelatinases (MMP2, MMP9), have been implicated in several features of inflammatory arthritis including angiogenesis and bone erosions [28].
  • Expression of MMP-9 was elevated by integrin aggregation, integrin-mediated ectodomain shedding was inhibited by a MMP-9 function blocking antibody, and incubation of cells with exogenous MMP-9 catalyzed E-cadherin ectodomain shedding [29].
  • Thrombin-induced invasion of U2-OS cells through Matrigel was mediated by the phosphatidylinositol 3-kinase signaling pathway and could be inhibited with an MMP-9 antibody [30].

Physical interactions of MMP9


Enzymatic interactions of MMP9

  • The closely related 92-kDa gelatinase/type IV collagenase (MMP-9) is unable to cleave soluble or fibrillar collagen under identical conditions indicating that the specific collagenolytic activity of MMP-2 is not a general property of gelatinases [36].
  • MMP-7 and MMP-9 cleaved TFPI at Lys(20)-Leu(21) with additional COOH-terminal processing [37].
  • Here we demonstrate that gelatinase B proteolytically cleaves IFN-beta, kills its activity, and hence counteracts this cytokine as an antiviral and immunotherapeutic agent [38].
  • We aimed to assess the levels of intact IGFBP-3 and its cleaving protease MMP-9 in IBD [39].
  • By immunohistochemical analysis, we observe a positive correlation between strong MMP-9 expression and tyrosine phosphorylated Stat3 in primary breast cancer specimens [40].

Co-localisations of MMP9


Regulatory relationships of MMP9


Other interactions of MMP9

  • Physiological concentrations of progesterone (10-200 nM) almost totally abolished the release of collagenase, of total gelatinase activity, and of the active form of gelatinase B and largely inhibited the release of the active form of gelatinase A [47].
  • Cells at high density lost their ability to synthesize MMP-2 and MMP-9 in response to fibronectin and MMP expression was restored by transfection with a dominant-negative mutant of Ha-Ras or by treatment with wortmannin, PD 98059, or SB 202190 [48].
  • This led to a better understanding of regulator (IL-8) and effector molecules (gelatinase B) of neutrophils and of mechanisms underlying leukocytosis, shock syndromes, and stem cell mobilization by IL-8 [49].
  • Three other CXC chemokines-connective tissue-activating peptide-III (CTAP-III), platelet factor-4 (PF-4), and GRO-alpha-were degraded by gelatinase B [49].
  • Our data indicate that the MMP-3 promoter constitutes a novel target of the defective mismatch repair machinery in sporadic colorectal tumors, resulting in a dramatic decrease in the levels of the active MMP-9 form, which may result in a lessened capacity for invasion [50].

Analytical, diagnostic and therapeutic context of MMP9

  • To confirm MMP9 expression at different levels, we simultaneously performed RT-PCR, Western blotting, and IHC on tissues from a separate cohort of 23 patients with ESCC [51].
  • MATERIALS AND METHODS: Level and distribution of MMP2, MMP9, and TIMP2 expression were evaluated on 73 biopsies by immunohistochemistry and immunoblotting [52].
  • MMP9 expression was a negative, independent predictor of disease-free survival time (Hazard ratio, 1.470; 95% CI, 1.105 approximately 1.955; p= 0.008) [51].
  • Simultaneous measurement of MMP9 and TIMP1 mRNA in human non small cell lung cancers by multiplex real time RT-PCR [53].
  • In addition an acute 10- to 160-fold increase of 92-kD gelatinase (MMP9) was detected in bronchial lavage fluid from patients with SA associated with a free metallogelatinolytic activity, suggesting an imbalance in the local production of proteases and antiproteases [54].


  1. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Yoshizaki, T., Sato, H., Furukawa, M., Pagano, J.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. Mira, E., Lacalle, R.A., Buesa, J.M., de Buitrago, G.G., Jiménez-Baranda, S., Gómez-Moutón, C., Martínez-A, C., Mañes, S. J. Cell. Sci. (2004) [Pubmed]
  3. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. Rowsell, S., Hawtin, P., Minshull, C.A., Jepson, H., Brockbank, S.M., Barratt, D.G., Slater, A.M., McPheat, W.L., Waterson, D., Henney, A.M., Pauptit, R.A. J. Mol. Biol. (2002) [Pubmed]
  4. Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart. Soini, Y., Satta, J., Määttä, M., Autio-Harmainen, H. J. Pathol. (2001) [Pubmed]
  5. Associations of matrix metalloproteinase-9 protein polymorphisms with lymph node metastasis but not invasion of gastric cancer. Tang, Y., Zhu, J., Chen, L., Chen, L., Zhang, S., Lin, J. Clin. Cancer Res. (2008) [Pubmed]
  6. Matrix metalloproteinase3 and 9 gene promoter polymorphisms: joint action of two loci as a risk factor for coronary artery complicated plaques. Pöllänen, P.J., Lehtimäki, T., Mikkelsson, J., Ilveskoski, E., Kunnas, T., Perola, M., Penttilä, A., Mattila, K.M., Nikkari, S.T., Syrjäkoski, K., Karhunen, P.J. Atherosclerosis (2005) [Pubmed]
  7. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Adair, J.C., Charlie, J., Dencoff, J.E., Kaye, J.A., Quinn, J.F., Camicioli, R.M., Stetler-Stevenson, W.G., Rosenberg, G.A. Stroke (2004) [Pubmed]
  8. HIV-1 glycoprotein 120 induces the MMP-9 cytopathogenic factor production that is abolished by inhibition of the p38 mitogen-activated protein kinase signaling pathway. Missé, D., Esteve, P.O., Renneboog, B., Vidal, M., Cerutti, M., St Pierre, Y., Yssel, H., Parmentier, M., Veas, F. Blood (2001) [Pubmed]
  9. Matrix metalloproteinases in dog brains exhibiting Alzheimer-like characteristics. Lim, G.P., Russell, M.J., Cullen, M.J., Tökés, Z.A. J. Neurochem. (1997) [Pubmed]
  10. Increased fibronectin expression in lung in the setting of chronic alcohol abuse. Burnham, E.L., Moss, M., Ritzenthaler, J.D., Roman, J. Alcohol. Clin. Exp. Res. (2007) [Pubmed]
  11. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Kim, J., Yu, W., Kovalski, K., Ossowski, L. Cell (1998) [Pubmed]
  12. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J., Glass, C.K. Nature (1998) [Pubmed]
  13. Matrilysin-dependent elastolysis by human macrophages. Filippov, S., Caras, I., Murray, R., Matrisian, L.M., Chapman, H.A., Shapiro, S., Weiss, S.J. J. Exp. Med. (2003) [Pubmed]
  14. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. Herman, M.P., Sukhova, G.K., Kisiel, W., Foster, D., Kehry, M.R., Libby, P., Schönbeck, U. J. Clin. Invest. (2001) [Pubmed]
  15. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. Alper O, n.u.l.l., Bergmann-Leitner, E.S., Bennett, T.A., Hacker, N.F., Stromberg, K., Stetler-Stevenson, W.G. J. Natl. Cancer Inst. (2001) [Pubmed]
  16. Anti-invasive activity of ursolic acid correlates with the reduced expression of matrix metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells. Cha, H.J., Bae, S.K., Lee, H.Y., Lee, O.H., Sato, H., Seiki, M., Park, B.C., Kim, K.W. Cancer Res. (1996) [Pubmed]
  17. Activation of pro-gelatinase B by endometase/matrilysin-2 promotes invasion of human prostate cancer cells. Zhao, Y.G., Xiao, A.Z., Newcomer, R.G., Park, H.I., Kang, T., Chung, L.W., Swanson, M.G., Zhau, H.E., Kurhanewicz, J., Sang, Q.X. J. Biol. Chem. (2003) [Pubmed]
  18. Thrombosed arteriovenous fistula for hemodialysis access is characterized by a marked inflammatory activity. Chang, C.J., Ko, Y.S., Ko, P.J., Hsu, L.A., Chen, C.F., Yang, C.W., Hsu, T.S., Pang, J.H. Kidney Int. (2005) [Pubmed]
  19. (-)-Epigallocatechin-3-gallate promotes pro-matrix metalloproteinase-7 production via activation of the JNK1/2 pathway in HT-29 human colorectal cancer cells. Kim, M., Murakami, A., Kawabata, K., Ohigashi, H. Carcinogenesis (2005) [Pubmed]
  20. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Joos, L., He, J.Q., Shepherdson, M.B., Connett, J.E., Anthonisen, N.R., Paré, P.D., Sandford, A.J. Hum. Mol. Genet. (2002) [Pubmed]
  21. Fourteenth Annual Pezcoller Symposium: the novel dichotomy of immune interactions with tumors. Hanahan, D., Lanzavecchia, A., Mihich, E. Cancer Res. (2003) [Pubmed]
  22. Differential Expression of Matrix Metalloproteinase 3 (MMP3) in Preadipocytes/Stromal Vascular Cells From Nonobese Nondiabetic Versus Obese Nondiabetic Pima Indians. Traurig, M.T., Permana, P.A., Nair, S., Kobes, S., Bogardus, C., Baier, L.J. Diabetes (2006) [Pubmed]
  23. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. Chandrasekar, B., Mummidi, S., Mahimainathan, L., Patel, D.N., Bailey, S.R., Imam, S.Z., Greene, W.C., Valente, A.J. J. Biol. Chem. (2006) [Pubmed]
  24. High glucose and homocysteine synergistically affect the metalloproteinases-tissue inhibitors of metalloproteinases pattern, but not TGFB expression, in human fibroblasts. Solini, A., Santini, E., Nannipieri, M., Ferrannini, E. Diabetologia (2006) [Pubmed]
  25. Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 6. Nie, J., Pei, D. Exp. Cell Res. (2004) [Pubmed]
  26. Tumor necrosis factor-alpha inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first-trimester villous explant cultures. Bauer, S., Pollheimer, J., Hartmann, J., Husslein, P., Aplin, J.D., Knöfler, M. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  27. The Role of Prostaglandins in the Mechanism of Lipopolysaccharide-Induced proMMP9 Secretion from Human Placenta and Fetal Membrane Cells. Li, W., Unlugedik, E., Bocking, A.D., Challis, J.R. Biol. Reprod. (2007) [Pubmed]
  28. Gelatinase expression and activity in the synovium and skin of patients with erosive psoriatic arthritis. Hitchon, C.A., Danning, C.L., Illei, G.G., El-Gabalawy, H.S., Boumpas, D.T. J. Rheumatol. (2002) [Pubmed]
  29. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Symowicz, J., Adley, B.P., Gleason, K.J., Johnson, J.J., Ghosh, S., Fishman, D.A., Hudson, L.G., Stack, M.S. Cancer Res. (2007) [Pubmed]
  30. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. Radjabi, A.R., Sawada, K., Jagadeeswaran, S., Eichbichler, A., Kenny, H.A., Montag, A., Bruno, K., Lengyel, E. J. Biol. Chem. (2008) [Pubmed]
  31. Interferons inhibit tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 activation via interferon regulatory factor-1 binding competition with NF-kappa B. Sancéau, J., Boyd, D.D., Seiki, M., Bauvois, B. J. Biol. Chem. (2002) [Pubmed]
  32. A PSP94-derived peptide PCK3145 inhibits MMP-9 secretion and triggers CD44 cell surface shedding: implication in tumor metastasis. Annabi, B., Bouzeghrane, M., Currie, J.C., Hawkins, R., Dulude, H., Daigneault, L., Ruiz, M., Wisniewski, J., Garde, S., Rabbani, S.A., Panchal, C., Wu, J.J., Béliveau, R. Clin. Exp. Metastasis (2005) [Pubmed]
  33. Generation and activity of the ternary gelatinase B/TIMP-1/LMW-stromelysin-1 complex. Kolkenbrock, H., Orgel, D., Hecker-Kia, A., Zimmermann, J., Ulbrich, N. Biol. Chem. Hoppe-Seyler (1995) [Pubmed]
  34. KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. Yan, C., Wang, H., Boyd, D.D. J. Biol. Chem. (2001) [Pubmed]
  35. Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. Collier, I.E., Krasnov, P.A., Strongin, A.Y., Birkedal-Hansen, H., Goldberg, G.I. J. Biol. Chem. (1992) [Pubmed]
  36. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. Aimes, R.T., Quigley, J.P. J. Biol. Chem. (1995) [Pubmed]
  37. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. Belaaouaj, A.A., Li, A., Wun, T.C., Welgus, H.G., Shapiro, S.D. J. Biol. Chem. (2000) [Pubmed]
  38. Gelatinase B/matrix metalloproteinase-9 cleaves interferon-beta and is a target for immunotherapy. Nelissen, I., Martens, E., Van den Steen, P.E., Proost, P., Ronsse, I., Opdenakker, G. Brain (2003) [Pubmed]
  39. Insulin-like growth factor binding protein 3 in inflammatory bowel disease. Kirman, I., Whelan, R.L., Jain, S., Nielsen, S.E., Seidelin, J.B., Nielsen, O.H. Dig. Dis. Sci. (2005) [Pubmed]
  40. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Dechow, T.N., Pedranzini, L., Leitch, A., Leslie, K., Gerald, W.L., Linkov, I., Bromberg, J.F. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  41. MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Chen, Y., Fan, Y., Poon, K.Y., Achrol, A.S., Lawton, M.T., Zhu, Y., McCulloch, C.E., Hashimoto, T., Lee, C., Barbaro, N.M., Bollen, A.W., Yang, G.Y., Young, W.L. Front. Biosci. (2006) [Pubmed]
  42. Unopposed matrix metalloproteinase-9 expression in human tuberculous granuloma and the role of TNF-alpha-dependent monocyte networks. Price, N.M., Gilman, R.H., Uddin, J., Recavarren, S., Friedland, J.S. J. Immunol. (2003) [Pubmed]
  43. Fibronectin-mediated cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation. The signaling role of protein kinase C-beta. Xie, B., Laouar, A., Huberman, E. J. Biol. Chem. (1998) [Pubmed]
  44. Differential induction of gelatinase B (MMP-9) and gelatinase A (MMP-2) in T lymphocytes upon alpha(4)beta(1)-mediated adhesion to VCAM-1 and the CS-1 peptide of fibronectin. Yakubenko, V.P., Lobb, R.R., Plow, E.F., Ugarova, T.P. Exp. Cell Res. (2000) [Pubmed]
  45. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Dreier, R., Grässel, S., Fuchs, S., Schaumburger, J., Bruckner, P. Exp. Cell Res. (2004) [Pubmed]
  46. Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of beta1-integrin, ERK, and NF-kappaB. Bhoopathi, P., Chetty, C., Kunigal, S., Vanamala, S.K., Rao, J.S., Lakka, S.S. J. Biol. Chem. (2008) [Pubmed]
  47. Progesterone regulates the activity of collagenase and related gelatinases A and B in human endometrial explants. Marbaix, E., Donnez, J., Courtoy, P.J., Eeckhout, Y. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  48. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Esparza, J., Vilardell, C., Calvo, J., Juan, M., Vives, J., Urbano-Márquez, A., Yagüe, J., Cid, M.C. Blood (1999) [Pubmed]
  49. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Van den Steen, P.E., Proost, P., Wuyts, A., Van Damme, J., Opdenakker, G. Blood (2000) [Pubmed]
  50. Stromelysin-1 promoter mutations impair gelatinase B activation in high microsatellite instability sporadic colorectal tumors. Morán, A., Iniesta, P., de Juan, C., González-Quevedo, R., Sánchez-Pernaute, A., Díaz-Rubio, E., Ramón y Cajal, S., Torres, A., Balibrea, J.L., Benito, M. Cancer Res. (2002) [Pubmed]
  51. Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Gu, Z.D., Li, J.Y., Li, M., Gu, J., Shi, X.T., Ke, Y., Chen, K.N. Am. J. Gastroenterol. (2005) [Pubmed]
  52. Metalloproteinase expression and prognosis in soft tissue sarcomas. Benassi, M.S., Gamberi, G., Magagnoli, G., Molendini, L., Ragazzini, P., Merli, M., Chiesa, F., Balladelli, A., Manfrini, M., Bertoni, F., Mercuri, M., Picci, P. Ann. Oncol. (2001) [Pubmed]
  53. Simultaneous measurement of MMP9 and TIMP1 mRNA in human non small cell lung cancers by multiplex real time RT-PCR. Simi, L., Andreani, M., Davini, F., Janni, A., Pazzagli, M., Serio, M., Orlando, C. Lung Cancer (2004) [Pubmed]
  54. Characteristics of the Inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Tonnel, A.B., Gosset, P., Tillie-Leblond, I. Int. Arch. Allergy Immunol. (2001) [Pubmed]
WikiGenes - Universities