The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis.

BACKGROUND: Bone morphogenetic proteins (BMPs) transmit signals via the intracellular protein Smad1, which is phosphorylated by ligand bound receptors, translocates to the nucleus, and functions to activate BMP target genes. Recently, a subclass of Smad proteins has been shown to inhibit, rather than transduce, BMP signalling, either by binding to the intracellular domain of BMP receptors, thereby preventing phosphorylation-mediated activation of Smad1, or by binding directly to Smad1, thereby inhibiting its ability to activate gene transcription. RESULTS: We have identified a Xenopus Smad (Smad6) that is 52% identical to mammalian Smad6, an inhibitory Smad. The spatial pattern of expression of Smad6 changes dynamically during embryogenesis and is similar to that of BMP-4 at the tailbud stage. Overexpression of Smad6 in Xenopus embryos phenocopies the effect of blocking BMP-4 signalling, leading to dorsalization of mesoderm and neuralization of ectoderm. Xenopus Smad6 completely blocks the activity of exogenous BMP-4, and, unlike human Smad6, partially blocks the activity of activin, in a mesoderm induction assay. We also find that Smad6 protein accumulates at the membrane in some cells but is partially or completely restricted to nuclei of most overexpressing cells. CONCLUSIONS: We have identified an inhibitory Xenopus Smad, Smad6, that functions as an intracellular antagonist of activin and BMP-4 signalling. Our finding that Smad6 protein is partially or completely restricted to nuclei of most overexpressing cells suggests that it may employ a novel or additional mechanism of action to antagonize TGF-beta family signalling other than that reported for other inhibitory Smads.[1]

References

  1. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Nakayama, T., Gardner, H., Berg, L.K., Christian, J.L. Genes Cells (1998) [Pubmed]
 
WikiGenes - Universities