The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1.
BACKGROUND: Signals from the B-cell antigen receptor (BCR) help to determine B-cell fate, directing either proliferation, differentiation, or growth arrest/apoptosis. The protein tyrosine phosphatase SHP-1 is known to regulate the strength of BCR signaling. Although the B-cell co-receptor CD22 binds SHP-1, B cells in CD22-deficient mice are much less severely affected than those in SHP-1-deficient mice, suggesting that SHP-1 may also regulate B-cell signaling by affecting other signaling molecules. Moreover, direct substrates of SHP-1 have not been identified in any B-cell signaling pathway. RESULTS: We identified the B-cell transmembrane protein CD72 as a new SHP-1 binding protein and as an in vivo substrate of SHP-1 in B cells. We also defined the binding sites for SHP-1 and the adaptor protein Grb2 on CD72. Tyrosine phosphorylation of CD72 correlated strongly with BCR-induced growth arrest/apoptosis in B-cell lines and in primary B cells. Preligation of CD72 attenuated BCR-induced growth arrest/death signals in immature and mature B cells or B-cell lines, whereas preligation of CD22 enhanced BCR-induced growth arrest/apoptosis. CONCLUSIONS: We have identified CD72 as the first clear in vivo substrate of SHP-1 in B cells. Our results suggest that tyrosine-phosphorylated CD72 may transmit signals for BCR-induced apoptosis. By dephosphorylation CD72. SHP-1 may have a positive role in B-cell signaling. These results have potentially important implications for the involvement of CD72 and SHP-1 in B-cell development and autoimmunity.[1]References
- The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Wu, Y., Nadler, M.J., Brennan, L.A., Gish, G.D., Timms, J.F., Fusaki, N., Jongstra-Bilen, J., Tada, N., Pawson, T., Wither, J., Neel, B.G., Hozumi, N. Curr. Biol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg