Biochemical, cellular and pharmacological activities of a human neuropeptide FF-related peptide.
We report on the biochemical, cellular and pharmacological activities of SQA-neuropeptide FF (Ser-Gln-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2), a peptide sequence contained in the human neuropeptide FF (neuropeptide FF, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) precursor. Quantitative autoradiography revealed that, in the superficial layers of the rat spinal cord, SQA-neuropeptide FF displayed the same high affinity for [125I]1DMe ([125I]D-Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2) binding sites (Ki = 0.33 nM) as did neuropeptide FF (Ki = 0.38 nM). In acutely dissociated mouse dorsal root ganglion neurones, SQA-neuropeptide FF reduced by 40% the depolarisation-induced rise in intracellular Ca2+ as measured with the Ca2+ indicator, Fluo-3. In mice, 1DMe and SQA-neuropeptide FF dose-dependently inhibited the antinociceptive effect of intracerebroventricular (i.c.v.) injections of morphine, but SQA-neuropeptide FF was less potent than 1DMe. Furthermore, SQA-neuropeptide FF, as well as 1DMe, produced marked hypothermia following third ventricle injections in mice. These data demonstrate that the human peptide, SQA-neuropeptide FF, exhibits biochemical and pharmacological properties similar to those of neuropeptide FF or neuropeptide FF analogues, and belongs to the neuropeptide FF family.[1]References
- Biochemical, cellular and pharmacological activities of a human neuropeptide FF-related peptide. Gelot, A., Mazarguil, H., Dupuy, P., Francés, B., Gouardères, C., Roumy, M., Zajac, J.M. Eur. J. Pharmacol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg