age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression.
An Arabidopsis transgenic line was constructed expressing beta-glucuronidase (GUS) via the auxin-responsive domains (AuxRDs) A and B (BA-GUS) of the PS-IAA4/5 gene in an indoleacetic acid (IAA)-dependent fashion. GUS expression was preferentially enhanced in the root elongation zone after treatment of young seedlings with 10(-7) M IAA. Expression of the BA-GUS gene in the axr1, axr4, and aux1 mutants required 10- to 100-fold higher auxin concentration than that in the wild-type background. GUS expression was nil in the axr 2 and axr 3 mutants. The transgene was used to isolate mutants exhibiting altered auxin-responsive gene expression (age). Two mutants, age1 and age2, were isolated and characterized. age1 showed enhanced sensitivity to IAA, with strong GUS expression localized in the root elongation zone in the presence of 10(-8) M IAA. In contrast, age2 exhibited ectopic GUS expression associated with the root vascular tissue, even in the absence of exogenous IAA. Morphological and molecular analyses indicated that the age1 and age2 alleles are involved in the regulation of gene expression in response to IAA.[1]References
- age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Oono, Y., Chen, Q.G., Overvoorde, P.J., Köhler, C., Theologis, A. Plant Cell (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg