The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation.

Serum response factor (SRF) plays a central role during myogenesis, being required for the expression of striated alpha-actin genes. As shown here, the small GTPase RhoA-dependent activation of SRF results in the expression of muscle-specific genes, thereby promoting myogenic differentiation in myoblast cell lines. Co-expression of activated V14-RhoA and SRF results in an approximately 10-fold activation of the skeletal alpha-actin promoter in replicating myoblasts, while SRFpm1, a dominant negative SRF mutant, blocks RhoA dependent skeletal alpha-actin promoter activity. Serum withdrawal further potentiates RhoA- and SRF- mediated activation of alpha-actin promoter to about 30-fold in differentiated myotubes. In addition, the proximal SRE1 in the skeletal alpha-actin promoter is sufficient to mediate RhoA signaling via SRF. Furthermore, SRFpm1 and to a lesser extent dominant negative N19-RhoA inhibit myoblast fusion, postreplicative myogenic differentiation, and expression of direct SRF targets such as skeletal alpha-actin and indirect targets such as myogenin and alpha-myosin heavy chain. Moreover, RhoA also stimulates the autoregulatable murine SRF gene promoter in myoblasts, and the expression level of SRF is reduced in myoblasts overexpressing N19-RhoA. Our study supports the concept that RhoA signaling via SRF serves as an obligatory muscle differentiation regulatory pathway.[1]

References

  1. RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. Wei, L., Zhou, W., Croissant, J.D., Johansen, F.E., Prywes, R., Balasubramanyam, A., Schwartz, R.J. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities