The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Myod1  -  myogenic differentiation 1

Mus musculus

Synonyms: AI503393, MYF3, MyoD, Myoblast determination protein 1, Myod, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Myod1


Psychiatry related information on Myod1

  • Thus, ILK likely influences the initial decision making process of myogenic differentiation by regulation of MAP kinase activation [6].
  • In murine myogenic cells the HLH network includes multiple members of the E protein, MyoD, and Id families; changes in the network characterize muscle determination and differentiation and have been proposed as causal for these developmental transitions [7].

High impact information on Myod1

  • The myogenic determination factor, MyoD (encoded by Myod1), is a target of the differentiation checkpoint in myoblasts [8].
  • A myogenic differentiation checkpoint activated by genotoxic stress [8].
  • MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types [9].
  • Our results demonstrate that SWI/SNF enzymes promote MyoD-mediated muscle differentiation and indicate that these enzymes function by altering chromatin structure in promoter regions of endogenous, differentiation-specific loci [9].
  • Therefore, Pax-3 and Myf-5 define two distinct myogenic pathways, and MyoD acts genetically downstream of these genes for myogenesis in the body [10].

Chemical compound and disease context of Myod1


Biological context of Myod1


Anatomical context of Myod1


Associations of Myod1 with chemical compounds


Physical interactions of Myod1


Enzymatic interactions of Myod1

  • Notch1 signals were measured by both the activation of the hairy/enhancer of split (HES1) promoter and by the antagonism of MyoD-induced muscle creatine kinase (MCK) promoter activity [30].
  • Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that Mos phosphorylates MyoD on serine 237 [31].

Regulatory relationships of Myod1

  • This suggests that Myf-5 expression is repressed by MyoD [16].
  • In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state [32].
  • Co-transfection of MyoD together with an activated form of MEF2C containing the Herpesvirus VP16 transcriptional activation domain partially bypasses the requirement for pRb and induces late muscle-gene expression in replicating cells [33].
  • In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media [3].
  • The homeodomain protein Barx2 promotes myogenic differentiation and is regulated by myogenic regulatory factors [26].
  • As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes [34].

Other interactions of Myod1


Analytical, diagnostic and therapeutic context of Myod1


  1. Autocrine growth factor signaling by insulin-like growth factor-II mediates MyoD-stimulated myocyte maturation. Wilson, E.M., Hsieh, M.M., Rotwein, P. J. Biol. Chem. (2003) [Pubmed]
  2. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M.C., Germani, A. J. Biol. Chem. (2004) [Pubmed]
  3. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., Kambadur, R. J. Biol. Chem. (2002) [Pubmed]
  4. The involvement of proteasome in myogenic differentiation of murine myocytes and human rhabdomyosarcoma cells. Mugita, N., Honda, Y., Nakamura, H., Fujiwara, T., Tanaka, K., Omura, S., Shimbara, N., Ogawa, M., Saya, H., Nakao, M. Int. J. Mol. Med. (1999) [Pubmed]
  5. MyoD is required for myogenic stem cell function in adult skeletal muscle. Megeney, L.A., Kablar, B., Garrett, K., Anderson, J.E., Rudnicki, M.A. Genes Dev. (1996) [Pubmed]
  6. The roles of integrin-linked kinase in the regulation of myogenic differentiation. Huang, Y., Li, J., Zhang, Y., Wu, C. J. Cell Biol. (2000) [Pubmed]
  7. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Neuhold, L.A., Wold, B. Cell (1993) [Pubmed]
  8. A myogenic differentiation checkpoint activated by genotoxic stress. Puri, P.L., Bhakta, K., Wood, L.D., Costanzo, A., Zhu, J., Wang, J.Y. Nat. Genet. (2002) [Pubmed]
  9. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. de la Serna, I.L., Carlson, K.A., Imbalzano, A.N. Nat. Genet. (2001) [Pubmed]
  10. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Tajbakhsh, S., Rocancourt, D., Cossu, G., Buckingham, M. Cell (1997) [Pubmed]
  11. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation. Wilson, E.M., Tureckova, J., Rotwein, P. Mol. Biol. Cell (2004) [Pubmed]
  12. Regulation of MyoD gene transcription and protein function by the transforming domains of the adenovirus E1A oncoprotein. Caruso, M., Martelli, F., Giordano, A., Felsani, A. Oncogene (1993) [Pubmed]
  13. The original pink-eyed dilution mutation (p) arose in Asiatic mice: implications for the H4 minor histocompatibility antigen, Myod1 regulation and the origin of inbred strains. Brilliant, M.H., Ching, A., Nakatsu, Y., Eicher, E.M. Genetics (1994) [Pubmed]
  14. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Arber, S., Halder, G., Caroni, P. Cell (1994) [Pubmed]
  15. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Maroto, M., Reshef, R., Münsterberg, A.E., Koester, S., Goulding, M., Lassar, A.B. Cell (1997) [Pubmed]
  16. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Rudnicki, M.A., Braun, T., Hinuma, S., Jaenisch, R. Cell (1992) [Pubmed]
  17. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. Sabourin, L.A., Girgis-Gabardo, A., Seale, P., Asakura, A., Rudnicki, M.A. J. Cell Biol. (1999) [Pubmed]
  18. Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. Smith, T.H., Kachinsky, A.M., Miller, J.B. J. Cell Biol. (1994) [Pubmed]
  19. Identification of novel MyoD gene targets in proliferating myogenic stem cells. Wyzykowski, J.C., Winata, T.I., Mitin, N., Taparowsky, E.J., Konieczny, S.F. Mol. Cell. Biol. (2002) [Pubmed]
  20. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., Bae, S.C. Mol. Cell. Biol. (2000) [Pubmed]
  21. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Gerber, A.N., Klesert, T.R., Bergstrom, D.A., Tapscott, S.J. Genes Dev. (1997) [Pubmed]
  22. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. Ishibashi, J., Perry, R.L., Asakura, A., Rudnicki, M.A. J. Cell Biol. (2005) [Pubmed]
  23. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Miner, J.H., Wold, B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  24. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta. Lopez-Casillas, F., Riquelme, C., Perez-Kato, Y., Ponce-Castaneda, M.V., Osses, N., Esparza-Lopez, J., Gonzalez-Nunez, G., Cabello-Verrugio, C., Mendoza, V., Troncoso, V., Brandan, E. J. Biol. Chem. (2003) [Pubmed]
  25. The MyoD-inducible p204 protein overcomes the inhibition of myoblast differentiation by Id proteins. Liu, C.J., Ding, B., Wang, H., Lengyel, P. Mol. Cell. Biol. (2002) [Pubmed]
  26. The homeodomain protein Barx2 promotes myogenic differentiation and is regulated by myogenic regulatory factors. Meech, R., Makarenkova, H., Edelman, D.B., Jones, F.S. J. Biol. Chem. (2003) [Pubmed]
  27. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Hamamori, Y., Wu, H.Y., Sartorelli, V., Kedes, L. Mol. Cell. Biol. (1997) [Pubmed]
  28. Smad7 promotes and enhances skeletal muscle differentiation. Kollias, H.D., Perry, R.L., Miyake, T., Aziz, A., McDermott, J.C. Mol. Cell. Biol. (2006) [Pubmed]
  29. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. de la Serna, I.L., Ohkawa, Y., Berkes, C.A., Bergstrom, D.A., Dacwag, C.S., Tapscott, S.J., Imbalzano, A.N. Mol. Cell. Biol. (2005) [Pubmed]
  30. Lack of requirement for presenilin1 in Notch1 signaling. Berechid, B.E., Thinakaran, G., Wong, P.C., Sisodia, S.S., Nye, J.S. Curr. Biol. (1999) [Pubmed]
  31. Mutation of MyoD-Ser237 abolishes its up-regulation by c-Mos. Pelpel, K., Leibovitch, M., Fernandez, A., Leibovitch, S.A. FEBS Lett. (2000) [Pubmed]
  32. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Hirsinger, E., Malapert, P., Dubrulle, J., Delfini, M.C., Duprez, D., Henrique, D., Ish-Horowicz, D., Pourquié, O. Development (2001) [Pubmed]
  33. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Novitch, B.G., Spicer, D.B., Kim, P.S., Cheung, W.L., Lassar, A.B. Curr. Biol. (1999) [Pubmed]
  34. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis. L'honore, A., Rana, V., Arsic, N., Franckhauser, C., Lamb, N.J., Fernandez, A. Mol. Biol. Cell (2007) [Pubmed]
  35. A role for FGF-6 in skeletal muscle regeneration. Floss, T., Arnold, H.H., Braun, T. Genes Dev. (1997) [Pubmed]
  36. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. Lluís, F., Ballestar, E., Suelves, M., Esteller, M., Muñoz-Cánoves, P. EMBO J. (2005) [Pubmed]
  37. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. Anastasi, S., Giordano, S., Sthandier, O., Gambarotta, G., Maione, R., Comoglio, P., Amati, P. J. Cell Biol. (1997) [Pubmed]
  38. Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube. Delfini, M.C., Duprez, D. Development (2004) [Pubmed]
  39. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures. Komaki, M., Asakura, A., Rudnicki, M.A., Sodek, J., Cheifetz, S. J. Cell. Sci. (2004) [Pubmed]
  40. Regulation of the mouse desmin gene: transactivated by MyoD, myogenin, MRF4 and Myf5. Li, H., Capetanaki, Y. Nucleic Acids Res. (1993) [Pubmed]
  41. In situ hybridization analysis for expression of myogenic regulatory factors in regenerating muscle of mdx mouse. Bhagwati, S., Ghatpande, A., Shafiq, S.A., Leung, B. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
WikiGenes - Universities