Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells.
We have used a human leukemia cell line that, after homologous recombination knockout of the gp91-phox subunit of the phagocyte respiratory-burst oxidase cytochrome b-558, mimics chronic granulomatous disease (X-CGD) to study the role of oxygen radicals in apoptosis. Camptothecin (CPT), a topoisomerase I inhibitor, induced significantly more apoptosis in PLB-985 cells than in X-CGD cells. Sensitivity to CPT was enhanced after neutrophilic differentiation, but was lost after monocytic differentiation. No difference between the two cell lines was observed after treatment with other apoptosis inducers, including etoposide, ultraviolet radiation, ionizing radiation, hydrogen peroxide, or 7-hydroxystaurosporine. After granulocytic differentiation of both cell lines, CPT still induced apoptosis, suggesting independence from replication in fully differentiated and growth-arrested cells. Pyrrolidine dithiocarbamate (an antioxidant inhibitor of NF-kappaB) and catalase partially inhibited CPT-induced DNA fragmentation in granulocytic-differentiated PLB-985 cells, but had no effect in X-CGD cells. Flow cytometry analysis revealed that reactive oxygen intermediates were generated in CPT-treated PLB-985 cells. These data indicate that oxygen radicals generated by NADPH oxidase may contribute directly or indirectly to CPT-induced apoptosis in human leukemia and in neutrophilic-differentiated cells.[1]References
- Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. Hiraoka, W., Vazquez, N., Nieves-Neira, W., Chanock, S.J., Pommier, Y. J. Clin. Invest. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg