The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus.

The complete nucleotide sequence of the attachment protein gene of Hendra virus, a new member of the subfamily Paramyxovirinae, has been determined from cDNA clones derived from viral genomic RNA. The deduced mRNA is 2565 nucleotides long with one open reading frame encoding a protein of 604 amino acids, which is similar in size to the attachment protein of the members of the subfamily. However, the mRNA transcript is >600 nucleotides longer than others in the subfamily due to the presence of long untranslated regions at both the 5' and 3' ends. The protein is designated G because it lacks both hemagglutination and neuraminidase activities. It contains a hydrophobic transmembrane domain close to the N terminus, eight potential N-linked glycosylation sites, and 18 cysteine residues. Although the HeV G protein had low sequence homology with Paramyxovirinae members, the predicted folding pattern of its extracellular globular head was very similar to that of members of the genus Paramyxovirus, with the location of seven potential pairs of sulfide bonds absolutely conserved. On the other hand, among the seven residues known to be critical for neuraminidase activity, only one was conserved in the Hendra virus G protein compared with at least six in HN proteins of paramyxoviruses and rubulaviruses and four in H proteins of morbilliviruses. The biological significance of this finding is discussed.[1]

References

 
WikiGenes - Universities