The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis.

Sustained, increased cell proliferation induced by dietary zinc deficiency in rats plays a critical role in esophageal carcinogenesis. It is the determining factor that converts an otherwise nontumorigenic dose of N-nitrosomethylbenzylamine (NMBA) into a highly tumorigenic one. We studied whether the increased esophageal cell proliferation and susceptibility to NMBA-induced carcinogenesis induced by zinc deficiency can be inhibited by alpha-difluoromethylornithine (DFMO), an enzyme-activated, irreversible inhibitor of ornithine decarboxylase (the first enzyme in polyamine synthesis). Weanling rats were divided into four groups: Zn+/DFMO-, Zn+/DFMO+, Zn-/DFMO-, and Zn-/DFMO+. They were fed ad libitum either a zinc-sufficient (Zn+, 75 ppm zinc) or a zinc-deficient (Zn-, 4 ppm zinc) diet and given either deionized water (DFMO-) or 1% DFMO in deionized water (DFMO+). After 5 weeks, 5-19 animals from each group were sacrificed after in vivo 5-bromo-2'-deoxyuridine labeling to detect cells in S phase. The remaining animals in each group were given a single intragastric dose of NMBA at 2 mg/kg and sacrificed 12 weeks later for tumor incidence analysis. At week 5, DFMO treatment greatly decreased (by 48-82%) the levels of putrescine and spermidine in rat esophagus, colon, and liver, irrespective of dietary zinc intake. The increased esophageal cell proliferation induced by dietary zinc deficiency, as measured by the labeling index, the number of labeled cells, and the total number of cells, was substantially reduced by DFMO. This was accompanied by an increase in the rate of apoptosis. In addition, the expression of bax protein, an apoptosis accelerator, was markedly stronger in esophagi from Zn-/DFMO+ animals that showed increased apoptosis, whereas increased expression of bcl-2, an inhibitor of apoptosis, was only seen in the highly proliferative, zinc-deficient esophagus (Zn-/DFMO-). At week 12 after NMBA dosing, DFMO reduced the incidence of esophageal tumors from 80 to 4% in zinc-deficient rats. Our data showed that DFMO effectively inhibited the increased esophageal cell proliferation induced by dietary zinc deficiency and reduced the incidence of esophageal tumors induced by a single dose of NMBA in zinc-deficient animals. Our results also indicate a role for increased apoptosis in the mechanism(s) whereby DFMO brings about the inhibition of cell proliferation and tumor induction. These findings support a role for DFMO as a chemopreventive agent.[1]

References

 
WikiGenes - Universities