The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Macrophage migration inhibitory factor expression in human renal allograft rejection.

BACKGROUND: Macrophage migration inhibitory factor ( MIF) plays a pivotal role in immune-mediated diseases. Despite the long-standing association of MIF with the delayed-type hypersensitivity response, the potential role of MIF in allograft rejection is unknown. METHODS: MIF expression was assessed by in situ hybridization and immunohistochemistry staining in 62 biopsies of human renal allograft rejection and in normal human kidney. RESULTS: MIF mRNA and protein is constitutively expressed in normal kidney, being largely restricted to tubular epithelial cells, some glomerular epithelial cells, and vascular smooth muscle cells. In both acute and chronic renal allograft rejection, there was marked up-regulation of MIF mRNA and protein expression by intrinsic kidney cells such as tubular epithelial cells and vascular endothelial and smooth muscle cells. There was also MIF expression by infiltrating macrophages and T cells. Of note, macrophage and T cell infiltrates were largely restricted to areas with marked up-regulation of MIF expression, potentially contributing to the development of severe tubulitis and intimal or transmural arteritis. Quantitative analysis found that increased MIF expression in allograft rejection gave a highly significant correlation with macrophage and T cell accumulation in both the glomerulus and interstitium (P<0.001). In addition, the number of MIF+ tubules and interstitial MIF+ cells correlated significantly with the severity of allograft rejection (P<0.01), and the loss of renal function (P<0.01). In contrast, no up-regulation of renal MIF expression and no leukocyte accumulation was seen in allograft biopsies without evidence of rejection. CONCLUSIONS: This is the first study to demonstrate that local MIF expression is up-regulated during allograft rejection. The association between up-regulation of MIF expression, macrophage and T cell infiltration and the severity of renal allograft rejection suggests that MIF may be an important mediator in the process of allograft rejection.[1]


  1. Macrophage migration inhibitory factor expression in human renal allograft rejection. Lan, H.Y., Yang, N., Brown, F.G., Isbel, N.M., Nikolic-Paterson, D.J., Mu, W., Metz, C.N., Bacher, M., Atkins, R.C., Bucala, R. Transplantation (1998) [Pubmed]
WikiGenes - Universities