The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line.

Whole cell recording of H-146 cells revealed that the outward K+ current was completely inhibited by quinidine (IC50 approximately 17 microM). In contrast, maximal concentrations of 4-aminopyridine (4-AP; >/=10 mM) reversibly blocked only approximately 60% (IC50 approximately 1.52 mM). Ten millimolar 4-AP had no effect on the inhibition by hypoxia, which reduced current density from approximately 27 to approximately 13 pA/pF, whereas 1 mM quinidine abolished the hypoxic effect. In current clamp, 10 mM 4-AP depolarized the cell by approximately 18 mV and hypoxia caused further reversible depolarization of approximately 4 mV. One millimolar quinidine collapsed the membrane potential and abrogated any further hypoxic depolarization. RT-PCR revealed expression of the acid-sensitive, twin P domain K+ channel TASK but not of TWIK, TREK, or the known hypoxia-sensitive Kv2.1, which was confirmed by sequencing and further PCR with primers to the coding region of TASK. However, a reduction in extracellular pH had no effect on K+ current. Thus, although the current more closely resembles TWIK than TASK pharmacologically, structurally the reverse appears to be true. This suggests that a novel acid-insensitive channel related to TASK may be responsible for the hypoxia-sensitive K+ current of these cells.[1]

References

  1. Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. O'Kelly, I., Stephens, R.H., Peers, C., Kemp, P.J. Am. J. Physiol. (1999) [Pubmed]
 
WikiGenes - Universities