The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene.

Scavenger receptor type B class I (SR-BI), initially identified as a receptor that recognizes low density lipoprotein (LDL), was recently shown to mediate the selective uptake of high density lipoprotein (HDL) cholesteryl esters in liver and steroidogenic tissues. To evaluate effects on atherosclerosis, transgenic mice with liver-specific overexpression of SR-BI (SR-BI Tg mice) have been crossed onto LDL receptor-deficient backgrounds. To induce atherosclerosis in a setting of moderate hypercholesterolemia, heterozygous LDL receptor-deficient mice (LDLR1) were fed a high fat/cholesterol/bile salt diet, and homozygous LDL receptor knock-outs (LDLR0) were fed a high fat/cholesterol diet. LDLR1/SR-BI Tg mice showed decreases in VLDL, LDL, and HDL cholesterol and a significant 80% decrease in mean lesion area in the aortic root compared with LDLR1 mice (female LDLR1 74, 120 micrometers(2) versus LDLR1/SR-BI Tg 12, 667 micrometers(2); male 25, 747 micrometers(2)++ versus 5, 448 micrometers(2), respectively). LDLR0/SR-BI Tg mice showed decreased LDL and HDL cholesterol but increased VLDL cholesterol and no significant difference in extent of atherosclerosis compared with LDLR0 mice. Combined data analysis showed a strong correlation between atherosclerotic lesion area and the VLDL+LDL cholesterol level but no correlation with HDL level. These studies demonstrate a strong anti-atherogenic potential of hepatic SR-BI overexpression. In mice with marked overexpression of SR-BI, the protective effect appears to be primarily related to the lowering of VLDL and LDL cholesterol levels.[1]

References

 
WikiGenes - Universities