The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of the intronic elements in the endogenous immunoglobulin heavy chain locus. Either the matrix attachment regions or the core enhancer is sufficient to maintain expression.

High level expression in mice of transgenes derived from the immunoglobulin heavy chain (IgH) locus requires both the core enhancer (Emu) and the matrix attachment regions (MARs) that flank Emu. The need for both elements implies that they each perform a different function in transcription. While it is generally assumed that expression of the endogenous IgH locus has similar requirements, it has been difficult to assess the role of these elements in expression of the endogenous heavy chain gene, because B cell development and IgH expression are strongly interdependent and also because the locus contains other redundant activating elements. We have previously described a gene-targeting approach in hybridoma cells that overcomes the redundancy problem to yield a stable cell line in which expression of the IgH locus depends strongly on elements in the MAR-Emu-MAR segment. Using this system, we have found that expression of the endogenous mu gene persists at substantially (approximately 50%) normal levels in recombinants which retain either the MARs or Emu. That is, despite the dissimilar biochemical activities of these two elements, either one is sufficient to maintain high level expression of the endogenous locus. These findings suggest new models for how the enhancer and MARs might collaborate in the initiation or maintenance of transcription.[1]

References

 
WikiGenes - Universities