The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

hemT  -  5-aminolevulinate synthase

Rhodobacter sphaeroides 2.4.1

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of hemT

  • In Rhodobacter sphaeroides 2.4.1, the cellular requirements for 5-aminolevulinic acid (ALA) are in part regulated by the level of ALA synthase activity, which is encoded by the hemA and hemT genes [1].
  • On the other hand, the hemT gene from mutant H-5 was able to complement an E. coli mutant requiring ALA for growth [2].
  • The 5-aminolevulinate synthase gene (hemA) from Rhizobium meliloti was used to probe a genomic lambda bank derived from Rhodobacter sphaeroides DNA [3].
  • 5-Aminolevulinate synthase of Rhodopseudomonas spheroides interacts with its cofactor, pyridoxal phosphate, and shows an absorption maximum at 430 nm with a probable shoulder at 320--330 nm [4].
 

High impact information on hemT

 

Biological context of hemT

 

Associations of hemT with chemical compounds

  • The hemA and hemT genes encode isozymes that catalyze the formation of 5-aminolevulinic acid, the first step in the biosynthesis of all tetrapyrroles present in R. sphaeroides 2.4 [10].
  • Mode of binding of pyridoxal phosphate to 5-aminolevulinate synthase [4].
 

Other interactions of hemT

References

  1. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. Zeilstra-Ryalls, J.H., Kaplan, S. J. Bacteriol. (1995) [Pubmed]
  2. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy. Zeilstra-Ryalls, J.H., Kaplan, S. J. Bacteriol. (1995) [Pubmed]
  3. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Tai, T.N., Moore, M.D., Kaplan, S. Gene (1988) [Pubmed]
  4. Mode of binding of pyridoxal phosphate to 5-aminolevulinate synthase. Nandi, D.L. Z. Naturforsch., C, Biosci. (1978) [Pubmed]
  5. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene. Fales, L., Kryszak, L., Zeilstra-Ryalls, J. J. Bacteriol. (2001) [Pubmed]
  6. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. Neidle, E.L., Kaplan, S. J. Bacteriol. (1993) [Pubmed]
  7. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. Neidle, E.L., Kaplan, S. J. Bacteriol. (1993) [Pubmed]
  8. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. Neidle, E.L., Kaplan, S. J. Bacteriol. (1992) [Pubmed]
  9. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain. Hornberger, U., Liebetanz, R., Tichy, H.V., Drews, G. Mol. Gen. Genet. (1990) [Pubmed]
  10. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. Zeilstra-Ryalls, J.H., Kaplan, S. J. Bacteriol. (1996) [Pubmed]
  11. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. Suwanto, A., Kaplan, S. J. Bacteriol. (1989) [Pubmed]
 
WikiGenes - Universities